November 2024

Volume 07 Issue 11 November 2024
Learning Activities in Mathematics Education: Application of Problem-Based Learning in Power Dominating Set for Electricity Network Optimization Problems
1Indah Yuliana, 2Jesy Irwanto, 3Didik Sugeng Pambudi, 4Dafik, 5I Made Tirta
1,2,3Department of Mathematics Education Postgraduate, Faculty of Teacher Training and Education, University of Jember,Indonesia,
4,5Department of Mathematics, Faculty of Mathematics and Natural Science, University of Jember, Indonesia.
DOI : https://doi.org/10.47191/ijsshr/v7-i11-77

Google Scholar Download Pdf
ABSTRACT

Learning activities in mathematics education play an important role in developing students' analytical and problem-solving skills, especially in applying mathematical concepts to real-world problems. This research aims to apply the Problem-Based Learning (PBL) method to the topic of Power Dominating Set to optimize the electricity network. Power Dominating Set is a concept in graph theory that can be used to minimize the number of control points in the electricity network, thus optimizing the use of resources and increasing the efficiency of the network. By using PBL, students are expected to understand the concept of Power Dominating Set both abstractly and in a practical context relevant to the real world. This research was conducted using an experimental method with two groups of students, namely the experimental group using the PBL method and the control group using the conventional learning method. The results showed that the group that learned with PBL had a deeper understanding and better analytical skills in applying Power Dominating Set to electricity network optimization problems. Discussion of the results showed that the PBL approach is not only effective in improving the understanding of abstract mathematical concepts, but also capable of enhancing students' skills in identifying and solving real-world electricity network problems. Thus, the application of PBL in mathematics education can be an effective alternative to connect abstract mathematical concepts with practical applications, especially in electricity network optimization.

KEYWORDS:

Learning activities, Problem Based-Learning, Power Dominating Set, Electricity Network Optimization.

REFERENCES
1) Anderson, S. E., & Kuenzel, K. (2022). Power domination in cubic graphs and Cartesian products. Discrete Mathematics, 345(11), 113113. DOI: https://doi.org/10.1016/j.disc.2022.113113

2) Benson, K. F., Ferrero, D., Flagg, M., Furst, V., Hogben, L., & Vasilevska, V. (2018). Nordhaus–Gaddum problems for power domination. Discrete Applied Mathematics, 251, 103-113. DOI: https://doi.org/10.1016/j.dam.2018.06.004

3) Bläsius, T., & Göttlicher, M. (2023). An efficient algorithm for power dominating set. arXiv preprint arXiv:2306.09870. DOI: https://doi.org/10.48550/arXiv.2306.09870

4) Chang, G. J., Dorbec, P., Montassier, M., & Raspaud, A. (2012). Generalized power domination of graphs. Discrete applied mathematics, 160(12), 1691-1698. DOI: https://doi.org/10.1016/j.dam.2012.03.007

5) Erawanto, U. (2016). Pengembangan modul pembelajaran berbasis masalah untuk membantu meningkatkan berfikir kreatif mahasiswa. JINoP (Jurnal Inovasi Pembelajaran), 2(2), 427-436. DOI: https://doi.org/10.22219/jinop.v2i2.2629

6) Islamiati, A., Fitria, Y., Sukma, E., Fitria, E., & Oktari, S. T. (2024). The Influence of The Problem Based Learning (PBL) Model and Learning Style on the Thinking Abilities. Jurnal Penelitian Pendidikan IPA, 10(4), 1934-1940. DOI: https://doi.org/10.29303/jppipa.v10i4.6219

7) Lu, C., Mao, R., & Wang, B. (2020). Power domination in regular claw-free graphs. Discrete Applied Mathematics, 284, 401-415. DOI: https://doi.org/10.1016/j.dam.2020.03.055

8) Marsidi, M., Sunardi, S., Susanto, S., & Suwito, A. (2023). RBL-STEM Learning Framework: Improving Students' Creative Thinking Skills in Solving Natural Disaster Monitoring and Prediction System Problems Using The Resolving Dominating Set Technique. CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS, 4(2), 123-140. DOI: https://doi.org/10.25037/cgantjma.v4i2.106

9) Pangaribuan, F. R. (2022). Efforts to Improve the Ability to Identify the Structure and Linguistic Elements of the Explanation Text using the Problem Based Learning (PBL) Model for VIII Class Students. Indonesian Journal of Education and Mathematical Science, 3(1), 29-33. DOI: https://doi.org/10.30596/ijems.v1i2.5470.s780

10) Purwanto, P., Tamrin, A., & Suharno, S. (2023). Analisis pengembangan sintak model pembelajaran project-based learning pada mata pelajaran dasar listrik dan elektronika di sekolah vokasional. Jurnal Ilmiah Pendidikan Teknik dan Kejuruan, 16(1), 1-10. DOI: https://doi.org/10.20961/jiptek.v16i1.68064

11) Samadun, S., & Dwikoranto, D. (2022). Improvement of student's critical thinking ability sin physics materials through the application of problem-based learning. IJORER: International Journal of Recent Educational Research, 3(5), 534-545. DOI: https://doi.org/10.46245/ijorer.v3i5.247

12) Shamdas, G. B., Laenggeng, A. H., Ashari, A., & Fardha, R. (2024). The Influence of the Problem-Based Learning Model on Metacognitive Knowledge and Science Learning Outcomes. Jurnal Penelitian Pendidikan IPA, 10(3), 1383-1395. DOI: https://doi.org/10.29303/jppipa.v10i3.5444

13) Syamsudin, F. I. (2020). Pengembangan perangkat pembelajaran eksperimen listrik statis berbasis inkuiri terbimbing laboratorium menggunakan phet colorado. Jurnal Materi dan Pembelajaran Fisika, 10(2), 68-75. DOI: https://doi.org/10.20961/jmpf.v10i2.43132

14) Yuliana, I., Agustin, I. H., & Wardani, D. A. R. (2019, April). On the power domination number of corona product and join graphs. In Journal of Physics: Conference Series (Vol. 1211, No. 1, p. 012020). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1211/1/012020

15) Zhao, M., Kang, L., & Chang, G. J. (2006). Power domination in graphs. Discrete mathematics, 306(15), 1812-1816. DOI: https://doi.org/10.1016/j.disc.2006.03.037

16) Zhao, M., Shan, E., & Kang, L. (2020). Power domination in the generalized petersen graphs. Discussiones Mathematicae Graph Theory, 40(3), 695-712. DOI: https://doi.org/10.7151/dmgt.2137

17) Zhao, M., Shan, E., & Kang, L. (2021). On a Conjecture for Power Domination. Graphs and Combinatorics, 37(4), 1215-1228. DOI: https://doi.org/10.1007/s00373-021-02307-8

18) Zulkarnaen, Z., Suhirman, S., Hidayat, S., Prayogi, S., Sarnita, F., Widia, W., & Verawati, N. N. S. P. (2022). The Effect of Problem Based Learning Model on Students' Creative Thinking Ability. Jurnal Penelitian Pendidikan IPA, 8(1), 379-382. DOI: https://doi.org/10.29303/jppipa.v8i1.1307
Volume 07 Issue 11 November 2024

Indexed In

Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar