July 2024

Volume 07 Issue 07 July 2024
Spatial Geographically Weighted Regression (GWR) Model on Toddler Stunting in Java Island
1Fita Airudelia, 2Ni Luh Putu Suciptawati, 3I Made Eka Dwipayana
1,2,3Departement of Mathematics, Udayana University, Bali Indonesia,
DOI : https://doi.org/10.47191/ijsshr/v7-i07-50

Google Scholar Download Pdf
ABSTRACT

Stunting is a condition where a child fails to grow properly in height for their age caused by long term chronic malnutrition, repeated infection and insufficient of psychosocial stimulation. Children with stunting are prone to poor of cognitive development and intelligent, metabolic disease, and lack of immune systems to prevent chronic diseases such as diabetes and cancer. Java is one of the most populous island in Indonesia with high prevalent of stunting in 2021. The high population density results in less access to the right to a healthy life, triggering the problem of stunting. Therefore, it is important to conduct research to determine the factors that influence stunting toddlers in districts/cities on the island of Java. The different percentage of stunted toddlers in each district/city on the island of Java shows that there are differences in the characteristics of each region due to the factors behind it, causing spatial heterogeneity. Therefore, the appropriate method used in this study is Geographically Weighted Regression (GWR). GWR is one of the developments of multiple linear regression models that take into account the location of the region. Spatial influence is considered in the construction of GWR model. The results showed that there were six groups of districts/cities based on predictor variables that had a significant effect on stunting toddlers, then exclusive breastfeeding and proper sanitation became the dominant predictor variables that had a significant effect on stunting toddlers in all districts/cities in Java Island.

KEYWORDS:

Stunting, Geographically Weighted Regression, Java Island, Spatial Heterogeneity, Spatial Influence

REFERENCES
1) Prakhasita, R. C. (2018). Hubungan Pola Pemberian Makan Dengan Kejadian Stunting pada Balita Usia 12-59 Bulan di Wilayah Kerja Puskesmas Tambak Wedi Surabaya. Skripsi, 1–119.

2) Menon, P., Headey, D., Avula, R., and Nguyen, P. H. (2018). Understanding the geographical burden of stunting in India: A regression-decomposition analysis of district-level data from 2015–16. Matern. Child Nutrition, 14(4), 1–10. doi: 10.1111/mcn.12620.

3) Khan, S., Zaheer, S., and Safdar, N. F. (2019). Determinants of stunting, underweight and wasting among children < 5 years of age: Evidence from 2012-2013 Pakistan demographic and health survey. BMC Public Health, 19(1), 1–15. doi: 10.1186/s12889-019-6688-2.

4) Bomela, N. J. (2009). Social, economic, health and environmental determinants of child nutritional status in three central asian republics. Public Health Nutrition, 12(10), 1871–1877. doi: 10.1017/S1368980009004790.

5) Fantay Gebru, K., Mekonnen Haileselassie, W., Haftom Temesgen, A., Oumer Seid, A., and Afework Mulugeta, B. (2019). Determinants of stunting among under-five children in Ethiopia: A multilevel mixed-effects analysis of 2016 Ethiopian demographic and health survey data. BMC Pediatr, 19(1), 1–13. doi: 10.1186/s12887-019-1545-0.

6) Seboka, B. T., et al. (2022). Spatial trends and projections of chronic malnutrition among children under 5 years of age in Ethiopia from 2011 to 2019: a geographically weighted regression analysis. J. Heal. Popul. Nutr, 41(1), 1–17. doi: 10.1186/s41043-022-00309-7.

7) Sutarto., Mayasari, D., and Indriyani, R. (2018). Stunting, Faktor Risiko dan Pencegahannya. Foss. Behav. Compend, 5, 243–243. doi: 10.1201/9781439810590-c34.

8) de Onis, M., et al. (2018). Prevalence thresholds for wasting, overweight and stunting in children under 5 years. Public Health Nutr, 22(1), 175–179. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/52FB155B69DC75990CEFEE0C13A65A65/S1368980018002434a.pdf/prevalence-thresholds-for-wasting-overweight-and-stunting-in-children-under-5-years.pdf

9) Ahda, S. (2023). Pemodelan Kasus Stunting di Indonesia dengan Menggunakan Analisis Regresi Spasial, C, 1–23. http://scholar.unand.ac.id/215841/

10) Wu, X., and Zhang, J. (2021). Exploration of spatial-temporal varying impacts on COVID-19 cumulative case in Texas using geographically weighted regression (GWR). Environ. Sci. Pollut. Res, 28(32), 43732–43746. doi: 10.1007/s11356-021-13653-8.

11) Anismuslim, M., Pramoedyo, H., Andarini, S., and Sudarto. (2023). Modeling of Risk Factors of Childhood Stunting Cases in Malang Regency using Geographically Weighted Regression (GWR). Open Public Health J, 16(1), 1–11. doi: 10.2174/18749445-v16-e230420-2022-165.

12) Guantanamo, M. W. D. S. (2023). Hubungan Kelengkapan Pemberian Vitamin a Terhadap Stunting Pada Balita Di Puskesmas Lebdosari.

13) Indrastuty, D., and Pujiyanto. (2019). Determinan Sosial Ekonomi Rumah Tangga dari Balita Stunting di Indonesia: Analisis Data Indonesia Family Life Survey (IFLS) 2014. J. Ekon. Kesehatan. Indonesia, 3(2), 68–75. doi: 10.7454/eki.v3i2.3004.

14) O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality and Quantity, 41(5), 673–690. doi: 10.1007/s11135-006-9018-6.

15) Hocking, R. R. (1997). Methods and Applications of Linear Models. Technometrics, 39(3), 332. doi: 10.2307/1271138.

16) Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2004). Applied Linear Statistical Models, 29(2). doi: 10.1080/00224065.1997.11979760.

17) Amin, R. A. (2021). Performa Bandwidth Cross Validation dan Akaike Information Criterion Corrected pada Model Geographically Weighted Regression (Studi Kasus: Jumlah Penduduk Kabupaten / Kota di Provinsi Sulawesi Selatan Tahun 2018).

18) Anselin, L. (2021). Spatial Models in Econometric Research. Oxford Res. Encycl. Econ. Financ. doi: 10.1093/acrefore/9780190625979.013.643.

19) Istifaiyah, I. (2018). Pemodelan Gizi Buruk Pada Balita di Provinsi Jawa Timur Menggunakan Geographically weighted Regression (GWR).

20) Fotheringham, A. S., Brunsdon, C., and Charlton, M. (2002).
Geographicallu Weighted Regression (the analysis of spatially varying relationships). https://www.academia.
edu/33626785/Geographically_Weighted_Regression_The_Analysis_of_
Spatially_Varying_Relationships_Wiley_2002

21) Fadhilah, N. (2015). Geographically Weighted Regression dan Spatial Pattern Analysis untuk Pemodelan Kejadian Penyakit Malaria.

22) Monalisa. K. A. (2022). Estimasi Angka Kematian Bayi di Indonesia Dengan GWR dan MGWR.

23) Hikmahrachim, H. G., Rohsiswatmo, R., and Ronoatmodjo, S. (2020). Efek ASI Eksklusif terhadap Stunting pada Anak Usia 6-59 bulan di Kabupaten Bogor tahun 2019. J. Epidemiologi. Kesehatan. Indonesia, 3(2), 77–82. doi: 10.7454/epidkes.v3i2.3425
Volume 07 Issue 07 July 2024

Indexed In

Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar Avatar