## **International Journal of Social Science and Human Research**

ISSN (print): 2644-0679, ISSN (online): 2644-0695

Volume 07 Issue 07 July 2024 DOI: 10.47191/ijsshr/v7-i07-86, Impact factor- 7.876 Page No: 5369-5393

# Analysis of Factors Influencing Total Retail Sales of Consumer Goods in Hainan Province, China

## **Zhang Jiasheng**

Faculty of Economics and Management, Universiti Kebangsaan Malaysia,

**ABSTRACT:** The total retail sales of social consumer goods is a comprehensive reflection of a country's consumption capacity, consumption structure and living standard, which is of great significance for evaluating a country's economic vitality and social development level. In recent years, with the continuous expansion of the consumer market and the improvement of consumers' purchasing power, the total retail sales of social consumer goods has continued to grow, and its role in the national economy has gradually increased. However, there are many factors that affect the total retail sales of social consumer goods, including economic environment, policies and regulations, consumer behavior and so on. Under this background, this paper takes Hainan Province as the empirical research object, and selects per capita disposable income, rural residents' per capita disposable income, gross domestic product, resident population at the end of the year and local government's general budget expenditure as explanatory variables to analyze the factors affecting the total retail sales of social consumer goods. The results show that the average disposable income of rural residents and the general budget expenditure of local governments are significant factors affecting the total retail sales of social consumer goods in Hainan Province. Finally, the model is analyzed economically, and some conclusions are drawn, and some policy suggestions are put forward.

KEYWORDS: Total retail sales; disposable income; budget expenditures; stepwise regression method

## **1. INTRODUCTION**

(i) Purpose of the Study and Significance of the Study

## 1. Purpose of the study

The total retail sales of social consumer goods is an important indicator reflecting the macro-economic operation, which is mainly used to reflect the consumption of physical goods in the whole society. Starting from the final link of commodity circulation, it observes the transformation of commodity sales to urban and rural residents' living consumption and social public consumption. The total retail sales of social consumer goods reflects the total scale and geographical distribution of the domestic consumer goods market, providing reference for analyzing and judging the overall situation, regional characteristics, commodity category supply and future market trend of the domestic consumer goods market, and providing basis for national macro-control; It reflects the total amount and trend of consumption demand for physical goods by urban and rural residents and society, and can be used to analyze and judge the influence of consumption demand on economic operation... Reflects the economic prosperity, as an important reference for judging the social environment factors and characteristics of the economic development of retail enterprises in Hainan Province, we seek good countermeasures to solve some problems in the process of researching Hainan's retail development model.

## 2. SIGNIFICANCE OF THE STUDY

The theoretical significance of studying the total retail sales of consumer goods lies in the following:

The total retail sales of social consumer goods is an important economic index to measure the total amount of social consumer goods



purchased by residents of a country or region in a certain period, which is of great significance to understand the consumption pattern, economic health and material and cultural living standards of people in Hainan Province. Consumer goods also reflect the market supply and demand situation, product distribution and the dynamics of commercial operation and market competition. A high level of total retail sales of social consumer goods means strong consumer demand, which has a positive impact on related industries and enterprises and promotes employment growth and economic vitality. The total retail sales of social consumer goods can also provide reference for the government to formulate macroeconomic policies. By monitoring the changes of total retail sales, the government can evaluate the economic development, consumer confidence and the relationship between market supply and demand, and take appropriate regulatory measures.

The practical significance of studying the total retail sales of consumer goods is:

The growth of total retail sales of consumer goods is of great significance to the development and structural adjustment of Hainan Province's economy. On the one hand, the contribution of consumption to the economic growth of Hainan Province is gradually increasing, which helps to realize the transformation and upgrading of the economic structure. On the other hand, the growth of total retail sales of consumer goods also reflects the improvement of the living standard of the people in Hainan Province, which can further promote the upgrading of consumption and the development of the culture and entertainment industry.

#### (ii) Research content

Then the empirical analysis, selecting "total retail sales of consumer goods" as the explanatory variable, "disposable income per capita of rural residents", "regional GDP", "year-end resident population", "general budget expenditure of local finance" as the explanatory variables, and analyzing the "Hainan Province's social and economic development". We choose "gross domestic product", "year-end resident population", "local general budget expenditure" as the explanatory variables to analyze the factors influencing the "total retail sales of consumer goods in Hainan Province". The problem of "the influence factors of total retail sales of consumer goods in Hainan Province" is analyzed empirically, and a multiple linear regression model is established through parameter estimation, multiple covariance, heteroskedasticity and autocorrelation tests and corrections.

Finally, the conclusion and policy recommendations of the whole paper summarize and summarize the empirical findings of the empirical analysis, and put forward the corresponding recommendations and initiatives accordingly.

#### **3. LITERATURE REVIEW**

#### **Economic influencing factors**

When studying the influencing factors of total retail sales of consumer goods, economic factors are often regarded as the most direct and significant influencing factors. In their study, Yuan Dan, Lu Yang and Zhang Yi (2022) point out that gross regional product (GDP) is an important factor influencing total retail sales. Their study used advanced econometric models to analyse and forecast retail sales in various provinces of China, highlighting the direct role of economic growth in enhancing consumption levels. In addition, Chen et al. (2023) also confirmed the positive correlation between GDP and total retail sales through time series analysis, showing that an increase in economic output can effectively promote the expansion of the retail market.

#### The role of income level

The level of residents' income is another core factor affecting the total retail sales of consumer goods. Cai Hong (2020) showed that the growth of per capita disposable income of urban and rural residents has a significant positive impact on total retail sales. This finding is supported by Luo Zhida and Lai Mingyu (2013), who point out through multiple regression analysis that higher income levels drive increased consumer demand, which in turn contributes to the prosperity of the retail market.

#### **Demographic factors**

The size and structure of the resident population at the end of the year also had a significant impact on total retail sales. A study by Sun Mei and Zhou Ming (2021) focused on Shanghai and found that population growth is positively correlated with total retail sales. They note that population growth not only increases overall consumption potential, but also promotes retail market diversification and the development of the service sector.

### **Local Government Policies**

Local government fiscal spending plays a key role in regulating and stimulating the consumer market.Fang H.L. (2009) examines the positive effect of local fiscal spending on retail sales in his study, suggesting that government policy measures are crucial in promoting economic growth and consumption expansion.

#### **Comprehensive Analysis and Methodological References**

In summary, the previous studies provide a valuable theoretical and empirical foundation for this paper. By analysing data from different regions and time periods in China, these studies have revealed a variety of factors affecting the total retail sales of consumer goods. Based on these research results, this paper will conduct an in-depth analysis using a multiple linear regression model, taking into account the specific economic and social conditions of Hainan Province, with a view to identifying the key factors affecting the total retail sales in the region. Through parameter estimation, multiple covariance test, detection and correction of heteroskedasticity and autocorrelation, the aim is to establish a forecasting model that is both accurate and region-specific.

#### 4. METHODOLOGY

#### Selection of variables:

According to the research purpose and research needs, and with reference to economic theories and practical experience, the explanatory and interpreted variables selected in this paper are shown below:

- Y total retail sales of consumer goods (unit: billion yuan)
- X2-Disposable income per capita of urban residents (unit: yuan)
- X3-Disposable income per capita of rural residents (unit: yuan)
- X4-Gross Regional Product (unit: billion yuan)
- X5-Year-end resident population (unit: ten thousand)
- X6-Local general budget expenditure (unit: billion yuan)

#### Source of Data:

Data source of this paper: National Bureau of Data and Statistics (individual missing values are obtained through the Statistical Yearbook on the official website of Hainan Provincial Bureau of Statistics). The data of Hainan Province from 1990 to 2022 are selected.

In order to make the empirical results more comparable, it is necessary to remove the price factor from the sample data to exclude its impact on the data and interference, the specific price adjustment is as follows:

(1) Hainan Province total retail sales of consumer goods (Y) data: first of all, through the Statistical Yearbook to obtain the retail price index of goods in Hainan Province (the previous year = 100), and then the use of fixed-base index is equal to the product of the chain index of the chain index will be converted into the above chain index to the fixed-base index of the base period of 1990, and finally the use of the nominal value of successive years divided by the corresponding fixed-base price index, and ultimately get the real value of the corresponding year. The real value of the corresponding year is finally obtained by dividing the nominal value by the corresponding fixed-base price index.

(2) Disposable income per capita of urban residents (X2) data: firstly, obtain the consumer price index of urban residents (previous year=100) through the statistical yearbook, then use the formula of fixed-base index equals to the product of chain index to transform the above chain index into the fixed-base index of the base period of 1990, and finally, use the nominal value of the calendar year to divide by the corresponding fixed-base price index, and finally, get the real value of the corresponding year. (2) The average value of per capita disposable income of rural residents

(3) Per capita disposable income of rural residents (X3): firstly, the consumer price index of rural residents (previous year = 100) is obtained through the Statistical Yearbook, and then, using the formula of fixed-base index equals to the product of chained indices, the above-mentioned chained indices are transformed into fixed-base indices with 1990 as the base period, and finally, the nominal value of a calendar year is divided by the corresponding fixed-base price index, and finally the actual value of the corresponding year is obtained. (3) Gross Regional Product (GRP)

(4) Gross regional product (X4) data: firstly, the index of Hainan Province's gross regional product (previous year=100) is obtained through the Statistical Yearbook, and then, using the formula of fixed-base index equals to the product of multiplying chain indexes,

the above chain indexes are transformed into fixed-base indexes with 1990 as the base period, and finally, using the nominal value of the base period of 1990 multiplied by the fixed-base speed of development of the respective period, thus obtaining the real value after the price adjustments. The real value after price adjustment is obtained.

(5) Year-end resident population (X5) data: the year-end resident population data of Hainan Province is obtained through the statistical yearbook, which does not require price adjustment because it is not measured in monetary units.

(6) General Budget Expenditure of Local Finance (X6): The data of Consumer Price Index of Hainan Province (previous year=100) is obtained through the Statistical Yearbook, and then it is transformed into the fixed-base index with 1990 as the base period, and finally, the nominal value of all the years is divided by the corresponding fixed-base price index to get the real value of the corresponding year.

# This paper uses quantitative research methods and econometric methods to quantify the data, and forms objective conclusions, mainly including:

The stepwise regression method was used in correcting the multicollinearity; the white test was used in testing the heteroscedasticity of the model, and the weighted least squares method was needed in correcting the heteroscedasticity; the D.W. test was used in testing the autocorrelation of the model, and the generalized difference was used in correcting the model.

#### 5. RESULTS AND DISCUSSION

(i) Selection of variables and data sources

#### 1. Selection of variables

According to the research purpose and research needs, and with reference to economic theories and practical experience, the explanatory and interpreted variables selected in this paper are shown below:

Y - total retail sales of consumer goods (unit: billion yuan)

X2-Disposable income per capita of urban residents (unit: yuan)

X3-Disposable income per capita of rural residents (unit: yuan)

X4-Gross Regional Product (unit: billion yuan)

X5-Year-end resident population (unit: ten thousand)

X6-Local general budget expenditure (unit: billion yuan)

#### 2. Source of Data

Data source of this paper: National Bureau of Data and Statistics (individual missing values are obtained through the Statistical Yearbook on the official website of Hainan Provincial Bureau of Statistics). The data of Hainan Province from 1990 to 2022 are selected.

In order to make the empirical results more comparable, it is necessary to remove the price factor from the sample data to exclude its impact on the data and interference, the specific price adjustment is as follows:

(1) Hainan Province total retail sales of consumer goods (Y) data: first of all, through the Statistical Yearbook to obtain the retail price index of goods in Hainan Province (the previous year = 100), and then the use of fixed-base index is equal to the product of the chain index of the chain index will be converted into the above chain index to the fixed-base index of the base period of 1990, and finally the use of the nominal value of successive years divided by the corresponding fixed-base price index, and ultimately get the real value of the corresponding year. The real value of the corresponding year is finally obtained by dividing the nominal value by the corresponding fixed-base price index.

(2) Disposable income per capita of urban residents (X2) data: firstly, obtain the consumer price index of urban residents (previous year=100) through the statistical yearbook, then use the formula of fixed-base index equals to the product of chain index to transform the above chain index into the fixed-base index of the base period of 1990, and finally, use the nominal value of the calendar year to divide by the corresponding fixed-base price index, and finally, get the real value of the corresponding year. (2) The average value of per capita disposable income of rural residents

(3) Per capita disposable income of rural residents (X3): firstly, the consumer price index of rural residents (previous year = 100) is obtained through the Statistical Yearbook, and then, using the formula of fixed-base index equals to the product of chained indices, the above-mentioned chained indices are transformed into fixed-base indices with 1990 as the base period, and finally, the nominal

value of a calendar year is divided by the corresponding fixed-base price index, and finally the actual value of the corresponding year is obtained. (3) Gross Regional Product (GRP)

(4) Gross regional product (X4) data: firstly, the index of Hainan Province's gross regional product (previous year=100) is obtained through the Statistical Yearbook, and then, using the formula of fixed-base index equals to the product of multiplying chain indexes, the above chain indexes are transformed into fixed-base indexes with 1990 as the base period, and finally, using the nominal value of the base period of 1990 multiplied by the fixed-base speed of development of the respective period, thus obtaining the real value after the price adjustments. The real value after price adjustment is obtained.

(5) Year-end resident population (X5) data: the year-end resident population data of Hainan Province is obtained through the statistical yearbook, which does not require price adjustment because it is not measured in monetary units.

(6) General Budget Expenditure of Local Finance (X6): The data of Consumer Price Index of Hainan Province (previous year=100) is obtained through the Statistical Yearbook, and then it is transformed into the fixed-base index with 1990 as the base period, and finally, the nominal value of all the years is divided by the corresponding fixed-base price index to get the real value of the corresponding year.

(ii) Modeling and testing

1. Model building and parameter estimation

According to the research purpose of this topic, an econometric model of the following form is set up (overall regression function):  $Y_t = \beta_1 + \beta_2 X_{2t} + \beta_3 X_{3t} + \beta_4 X_{4t} + \beta_5 X_{5t} + \beta_6 X_{6t} + \mu_t, t = 1990, \dots 2022$ 

Based on the resulting data (Figure 1), the estimation of the model is written as:

$$\begin{split} \widehat{Y}_{t} &= 450.9463 + 0.032594X_{2t} + 0.100225X_{3t} + 0.220017X_{4t} - 0.827083X_{5t} - 0.211674X_{6t} \\ \text{standard error} \quad (136.4054) \ (0.025991) \ (0.051850) \ (0.203638) \ (0.223536) \ (0.247972) \\ \text{t-statistic} \quad (3.305927) \ (1.254071) \ (1.932975) \ (1.080434) \ (-3.699997) \ (-0.853622) \\ \mathbb{R}^{2} &= 0.995471, \ \overline{\mathbb{R}}^{2} &= 0.994632, \ \mathbb{F} = 1186.808, \ \mathbb{D}.\mathbb{W} = 1.618275, \ \mathbb{n} = 33 \end{split}$$

#### 2. Tests of the economic significance of the model

The model estimation results show that under the assumption that other variables remain unchanged, for every increase of RMB 1 in disposable income per capita of urban residents (X2), on average, the total retail sales of consumer goods (Y) will increase by RMB 0.032594 billion; for every increase of RMB 1 in disposable income per capita of rural residents (X3), on average, the total retail sales of consumer goods (Y) will increase by RMB 0.100225 billion; for every increase of RMB 1 in regional GDP (X4), on average, the total retail sales of consumer goods (Y) will increase by RMB 0.100225 billion; for every increase of RMB 1 in regional GDP (X4), on average, the total retail sales of consumer goods (Y) will increase by RMB 0.220017 billion; these regression parameters have positive and negative relationships. billion yuan; every increase of 100 million yuan in GDP (X4), on average, the total retail sales of consumer goods (Y) will increase by 0.220017 billion yuan; the positive and negative relationships of these regression parameters are consistent with the theory of economic significance, and therefore pass the test of economic significance.

For every 10,000 increase in the year-end resident population (X5), the total retail sales of consumer goods (Y) will decrease by 0.827083 billion yuan on average; for every 100 million yuan increase in the general budget expenditure of the local government (X6), the total retail sales of consumer goods (Y) will decrease by 0.211674 billion yuan on average; this is contrary to the meaning of the reality, and does not pass the test of economic significance.

Therefore, the two explanatory variables of year-end resident population (X5) and local general budget expenditure (X6) are excluded.

#### 3. Tests for the significance of model regression parameters

t-test: respectively, for,If the significance level is given, check the t-distribution table to get the critical value of the degrees of freedom for and; If the significance level is given, check the t-distribution table to get the critical value of the degrees of freedom for and.

From the Eviews data, the corresponding t-statistics are 3.305927, 1.932975, whose absolute values are greater than, which indicates that at the level of significance, it should be rejected, that is to say, in the case of other explanatory variables remain unchanged, the explanatory variable "per capita disposable income of rural residents (X3)" has a negative effect on the explanatory variable "retail sales of consumer goods". That is to say, the explanatory variable "disposable income per capita of rural residents (X3)" has a significant effect on the explanatory variable "total retail sales of consumer goods (Y)", while other explanatory variables remain

#### unchanged.

In addition, the corresponding t-statistics are 1.254071 and 1.080434, whose absolute values are less than, that is to say, they do not fall into the rejection domain and cannot be rejected under the given significance level, that is to say, under the condition that other explanatory variables remain unchanged, the explanatory variables of "per capita disposable income of urban residents (X2)" and "total retail sales of consumer goods (Y)" have a significant effect on the explanatory variable "total retail sales of consumer goods (Y)". That is to say, if other explanatory variables remain unchanged, the explanatory variables "disposable income per capita of urban residents (X2)" and "gross regional product (X4)" do not have a significant effect on the explanatory variables "disposable income per capita of urban residents (X2)". Moreover, the corresponding t-statistics are all less than and do not fall into the rejection domain, which means that they cannot be rejected under the condition. That is to say, under the condition that other explanatory variables "disposable income per capita of urban residents (X2)" and "gross regional product (X4)" have no significant effect on the explanatory variables "disposable income per capita of urban residents (X2)" and "gross regional product (X4)" have no significant effect on the explanatory variables "disposable income per capita of urban residents (X2)" and "gross regional product (X4)" have no significant effect on the explanatory variables "disposable income per capita of urban residents (X2)" and "gross regional product (X4)" have no significant effect on the explanatory variables "disposable income per capita of urban residents (X2)" and "gross regional product (X4)" have no significant effect on the explanatory variables "disposable income per capita of urban residents (X2)" and "gross regional product (X4)" have no significant effect on the explanatory variables "disposable income per capita of urban residents (X2)" and "gross regional product (X4)" have no s

Such a conclusion can also be judged from the P-value in the output of Eviews, and the corresponding P-value is 0.0638, which is greater than, but less than, indicating that the effect of "disposable income per capita of rural residents (X3)" on "total retail sales of consumer goods (Y)" is significant at the significance level. The effect of "per capita disposable income of rural residents (X3)" on "total retail sales of consumer goods (Y)" is significant.

#### 4. Model fit goodness-of-fit test

From the Eviews output, it can be obtained that the decidable coefficients, modified decidable coefficients, which indicates that the overall fit validity of the regression equation is very good.

#### 5. Tests for overall significance of the model

F test: for, given the level of significance, in the F distribution table to find out the degree of freedom for and the critical value. From the Eviews output results can be obtained,, due to >, the original hypothesis should be rejected, indicating that the regression equation is significant, i.e., "per capita disposable income of urban residents (X2)" "per capita disposable income of rural residents (X3)" The five variables of "Gross Regional Product (X4)" "Year-end Resident Population (X5)" "General Budget Expenditures of Local Finance (X6)" together do have a significant effect on "total retail sales of consumer goods (Y)" has a significant effect.

The model,, the decidable coefficient is very high,, clearly significant. At that time, the explanatory variables X3, X5 were significant, but the sign of the X5 parameter estimate was the opposite of what was expected in terms of economic significance, suggesting that the higher the number of permanent residents at the end of the year, the lower the total retail sales of consumer goods would be, which is clearly unreasonable. This suggests that there may be serious multicollinearity in the model.

To confirm the existence of multicollinearity, the model will be tested and corrected below.

## 6. TESTS AND CORRECTIONS FOR MODEL MULTICOLLINEARITY

#### (1) Test of multicollinearity

Simple correlation coefficient method, intuitive judgement method and variance expansion factor method are chosen to test.

Simple correlation coefficient test (Fig. 2): The correlation coefficient matrix shows that the correlation coefficients of the explanatory variables are high, which confirms that a certain degree of multicollinearity does exist.

Intuitive judgement method: ① The decidable coefficient of the model, the modified decidable coefficient, indicates that the overall fit of the regression equation is very good.

(2), the F-statistic is very large, indicating that the model as a whole is very significant, i.e., the five explanatory variables ("disposable income per capita of urban residents (X2)" "disposable income per capita of rural residents (X3)" "gross regional product (X4)," "year-end resident population (X5)," "general budget expenditure of local finance (X6)") combine to have a significant effect on the explanatory variable Y ("total retail sales of social consumer goods ") has a significant effect on the explanatory variable Y ("Total Retail Sales of Consumer Goods").

(3) For the regression parameters "disposable income per capita of urban residents (X2)" "disposable income per capita of rural residents (X3)" "Gross regional product (X4)" has a significant effect on the explanatory variable Y ("total retail sales of consumer goods"). "Total Retail Sales of Consumer Goods (Y)" shows a positive correlation; while "Year-end Resident Population (X5)"

"General Budget Expenditure of Local Finance (X6)" and "The sign of the regression coefficients of X5 and X6 in the model is contrary to the economic theory, and the t-value of the regression coefficients of X6 is smaller than the critical value, so it can't pass the test of significance.

Variance Expansion Factor Method (Figure 3): experience has shown that if the variance expands by a factor, it usually indicates that there is a serious multicollinearity between that explanatory variable and the rest of the explanatory variables. Here the variance expansion factors for X2, X3, X4, X5, and X6 are much greater than 10, indicating a serious multicollinearity problem.

(2) Logarithmic transformation and re-test of multicollinearity

In order to avoid setting errors caused by deleting important explanatory variables, explanatory variables are not arbitrarily deleted. Consider the variables to be log-transformed and then estimate the following model.

Therefore logarithmic transformation is done for Y, X2, X3, X4, X5 and X6. (Figure 4) After the transformation, it can be seen from the correlation coefficient matrix that each of the explanatory variables have high correlation coefficients with each other, confirming that there is indeed some multicollinearity.

In order to further understand this, variance expansion factor method was carried out and it can be seen from the Eviews output (Figure 5), which indicates that there is a serious multicollinearity between this explanatory variable and the rest of the explanatory variables. Here the variance expansion factor of  $\sum_{n=1}^{\infty}$  is much greater than 10, indicating a serious multicollinearity problem. Therefore, the model needs to be corrected for multicollinearity.

(3) Correction for multicollinearity

After determining the existence of multicollinearity in the model, this paper applies the stepwise regression method to correct the multicollinearity existing in the model. Using EViews to estimate the model parameters, respectively, with the explanatory variables to each explanatory variable for simple regression (regression results are shown in the Appendix Figure 6 - Figure 10), the regression results are organised as shown in Table 1.

| model           | X2: (+)  |
|-----------------|----------|----------|----------|----------|----------|
| Coefficient     | 0.080081 | 0.193277 | 0.415370 | 2.534998 | 1.362875 |
| value           |          |          |          |          |          |
| t-value         | 41.37209 | 57.90087 | 56.17226 | 15.68385 | 44.27289 |
| Admissibility   | 0.982211 | 0.990838 | 0.990271 | 0.888080 | 0.984431 |
| factor          |          |          |          |          |          |
| Revision of the | 0.981637 | 0.990542 | 0.989957 | 0.884469 | 0.983928 |
| decidability    |          |          |          |          |          |
| factor          |          |          |          |          |          |

Table 1. Regression results corresponding to each explanatory variable of the univariate stepwise regression

Through the regression results, it can be found that for the five one-way linear regression equations, the economic significance and significance of the parameters in the one-way model with as explanatory variables can pass the test. Next, for the five univariate models as explanatory variables, by comparing the size of the decidable coefficients, it was found that the model with as explanatory variables was the largest, so it was retained in this step. Subsequently, a binary linear regression model was constructed with as the base variable.

The binary linear regression model was constructed with as the benchmark variable and added sequentially. The regression results are shown in Table 2.

|                                 | 1                      | 1                      |                        |                               | 1                      |                          |                                    |
|---------------------------------|------------------------|------------------------|------------------------|-------------------------------|------------------------|--------------------------|------------------------------------|
| Add<br>variable                 | X2 (+)                 | X3 (+)                 | X4 (+)                 | X5 (+)                        | X6(+)                  | Admissibil<br>ity factor | Revised<br>decidabili<br>ty factor |
| X <sub>2</sub> 、X <sub>3</sub>  | 0.013281<br>(1.091990) | 0.161570<br>(5.528375) |                        |                               |                        | 0.991188                 | 0.990601                           |
| X3 \ X4                         |                        | 0.110894<br>(2.123666) | 0.177445<br>(1.580744) |                               |                        | 0.991542                 | 0.990979                           |
| X <sub>3</sub> × X <sub>5</sub> |                        | 0.222830<br>(20.95066) |                        | -0.426751<br>( -<br>2.896177) |                        | 0.992840                 | 0.992363                           |
| X <sub>3</sub> 、X <sub>6</sub>  |                        | 0.129450<br>(6.020595) |                        |                               | 0.455927<br>(2.997432) | 0.992949                 | 0.992479                           |

From the output results of the four binary linear regression equations (Figure 11-Figure 14), it can be seen that the four binary linear regression equation model's compared to the retained univariate linear regression model (), the regression model's decidable coefficient increases, that is, the introduction of all can effectively improve the model's fitting effect.

With the binary model as the explanatory variables, the economic significance of the economic significance can not pass the test, so this binary linear regression model is removed from the step; with the binary model as the explanatory variables, of the, that the explanatory variables on the explained variables is not significant, so it is removed from the step; due to the decision-making coefficients of the other two sets of variables in the other two sets of variables is larger, so it is thought to be the benchmark variable, in order to join, and to construct the ternary linear regression model. (See Figures 15 and 16 in the Appendix.) The regression results are shown in Table 3.

| Table 2 Decreasion no  | and a company on dime to cook | lanatan                    | e ternary stepwise regression |
|------------------------|-------------------------------|----------------------------|-------------------------------|
| Ianie 5. Repression re | sinns corresponding to each a | YNIANAIORY VARIANIE OF FRE | P TERNARY STENWISE REPRESSION |
|                        |                               |                            |                               |
|                        |                               |                            |                               |

| Add<br>variable                   | X <sub>2</sub> (+) | X <sub>3</sub> (+) | X <sub>4</sub> (-) | X <sub>5</sub> (+) | X <sub>6</sub> (+) | Admissibi<br>lity factor | Revised<br>decidabili<br>ty factor |
|-----------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------------|------------------------------------|
| $X_2$ , $X_3$ ,                   | -0.008019          | 0.139607           |                    |                    | 0.520121           | 0.993035                 | 0.992315                           |
| X <sub>6</sub>                    | (-0.597802)        | (5.060402)         |                    |                    | (2.773284)         | 0.995055                 | 0.992313                           |
| X <sub>3</sub> , X <sub>4</sub> , |                    | 0.133823           | -0.012910          |                    | 0.467504           | 0.992952                 | 0.002222                           |
| X <sub>6</sub>                    |                    | (2.708410)         | (-0.098693)        |                    | (2.408169)         | 0.992932                 | 0.992223                           |

| X <sub>3</sub> , X <sub>5</sub> ,<br>X <sub>6</sub> | 0.165070<br>(6.678421) | -0.340250<br>(-2.435543) | 0.369799<br>(2.544583) | 0.994147 | 0.993541 |
|-----------------------------------------------------|------------------------|--------------------------|------------------------|----------|----------|
|-----------------------------------------------------|------------------------|--------------------------|------------------------|----------|----------|

For the output results of the three ternary linear regression equations, it can be seen that the economic significance of the ternary model with as explanatory variables cannot pass the test; and the economic significance of the ternary model with as explanatory variables cannot pass the test, so these two ternary models are eliminated from this step; and the economic significance of the ternary model with as explanatory variables cannot pass the test;.

Since no ternary model can be retained in this step, the stepwise regression method ends here. Return to the previous step as the final result.

After the above 3 stepwise regression corrections, it has been possible to determine the elimination of the multicollinearity present in the model. The final regression equation obtained after eliminating the multicollinearity is:

Standard error (18.35369) (0.021501) (0.152106)

t-statistic (-3.927855) (6.020595) (2.997432)

 $R^2=0.992949,\ \overline{R}^2=0.992479,\ F=2112.497,\ DW=2.141959,\ n=33$ 

The results illustrate that, keeping other explanatory variables constant, for every increase of RMB 1 in per capita disposable income of rural residents (X3), on average, the total retail sales of consumer goods (Y) will increase by RMB billion correspondingly; for every increase of RMB 100 million in general budget expenditures of local finance (X6), on average, the total retail sales of consumer goods (Y) will increase by RMB billion correspondingly.

## 7. TEST AND CORRECTION OF MODEL HETEROSKEDASTICITY

According to this case, WHITE test needs to construct the auxiliary regression function as:

1. Conduct a significance test: (Appendix Figure 18)

(1) Formulate the hypothesis (overall parameters):

 $H_0: \alpha_1 = \alpha_2 = \alpha_3 = \ldots = \alpha_5 = 0$ (homoskedasticity)

 $H_1: \alpha_i$ Not all 0(Heteroskedasticity)

(2) Find the sample observations for the test statistic:

$$nR^2 = 27.226683$$

(3) Find the critical value to determine the rejection domain

Critical Value:  $\chi^{2}_{\alpha}(p) = \chi^{2}_{0.05}(5) = 11.0705$ 

Rejection domain:  $[11.0705, +\infty)$ Make a decision

 $nR^2 = 27.226683 > \chi^2_{0.05}$  that falls into the rejection domain, reject it, and assume that heteroskedasticity exists.

2. correct for heteroskedasticity (weighted least squares):

[RESULTS]: weighted using  $w1=1/(x3^2-x3^*x6)$  to get the EVIEWS output.

Firstly, the test of model parameter significance and economic significance: the model,, the decidable coefficients are high and clearly significant. The economic significance is consistent with reality and passes the test of economic significance.

Next, White was used again to test for heteroskedasticity: (results are shown in Appendix Figure 19), at which point the P-values are all greater than 0.05, indicating that there is no longer any heteroskedasticity.

It can be seen that after eliminating the heteroskedasticity using the weighted least squares method, the parametric t-tests are significant, as are the F-tests. It is found that there is no more heteroskedasticity by white test. The estimation results are:

Standard error (3.770616) (0.005704) (0.054177)

t-statistic (-8.493289) (15.62993) (12.01390)

 $R^2=0.990472,\ \overline{R}^2=0.989837,\ F=1559.289,\ DW=1.271058,\ n=33$ 

This indicates that for every 1 yuan increase in the disposable income per capita of rural residents, on average, the total retail sales

of social consumer goods will increase by billion yuan. For every RMB 1 increase in the general budget expenditure of local finances, the total retail sales of consumer goods will, on average, increase by RMB 100 million.

Tests and corrections for model autocorrelation

(1) Autocorrelation test (using the D.W. test) (see Appendix Figure 20)

From the Eviews output it can be obtained that  $d_L = 1.321$ ,  $d_U = 1.577$ , n = 33,  $\alpha = 0.05$ ,

D.W.=1.271058,  $0 < D.W. < d_L$ , A positive autocorrelation can be seen.

(2) Modified autocorrelation (generalised difference method)

1.From D.W.=1.271058 计算育

initial step: calculate  $\hat{\rho} = 1 - \frac{D.W.}{2} = 1 - \frac{1.271058}{2} = 0.364471$ 

second step: Generating generalised difference variables:

 $Y_t^* = Y_t - 0.364471Y_{t-1}, X_{3t}^* = X_{3t} - 0.364471X_{3(t-1)}, X_{6t}^* = X_{6t} - 0.364471X_{6(t-1)}$ 

generalised difference regression (GDR):

$$Y_{t} - 0.364471Y_{t-1} = \beta_{1}(1 - 0.364471) + \beta_{2}(X_{3} - 0.364471X_{3-1}) + \beta_{3}(X_{6} - 0.364471X_{6-1})$$

The output of the generalised difference regression was obtained using EViews as (see Appendix Figure 21):

 $Y_{t} - 0.364471Y_{t-1} = -18.57524(1 - 0.364471) + 0.086505(X_{3} - 0.364471X_{3-1}) + 0.659375(X_{6} - 0.364471X_{6-1})$ 

Standard error (3.662715) (0.008148) (0.073344)

t-statistic (-5.071442) (10.61644) (8.990184)

 $R^2=0.981457,\ \overline{R}^2=0.980178,\ F=767.4765,\ D.W.=1.650241$ 

Due to the use of generalised difference, the sample sample size is reduced by 1 to 32, checking the D.W. statistics table at 5% significant level shows that the model is in the model, indicating that there is no more autocorrelation in this generalised difference model at 5% significant level.

(III) Analysis of the final empirical results

Through the above analysis, the model has been corrected for multicollinearity, heteroskedasticity and autocorrelation problems and the final model established is:

$$\widehat{Y}_{t} = -18.57524 + 0.086505X_{3t} + 0.659375X_{6t}$$

Standard deviation (3.662715) (0.008148) (0.073344)

T-value (-5.071442) (10.61644) (8.990184)

1. Test of economic significance

Under the condition of controlling other explanatory variables unchanged, every increase of RMB 1 in per capita disposable income of rural residents will increase total retail sales of consumer goods by 100 million yuan on average; and an increase of 100 million yuan in the general budget expenditure of local finances will increase total retail sales of consumer goods by 100 million yuan on average, which is in line with the actual economic theory, and the test passes.

2. Goodness-of-fit test

From the results of the model, it can be seen that the coefficient of determination, the modified coefficient of determination, the coefficient of determination is high, which means that the model is well fitted.

Significance test of regression parameters

(1) Formulation of the hypothesis: original hypothesis:  $H_0: \beta_j = 0$  (X has no significant effect on Y);

alternative hypothesis:  $H_1: \beta_j \neq 0$  (j=3,6)

(2) The t-test statistics were: t3=10.61644 t6=8.990184

(3) Determine the denial domain:  $(-\infty, -t_{\alpha/2}(n-k)]U[t_{\alpha/2}(n-k), +\infty)$ 

t0.025(32-3)=t0.025(29)=2.045

Therefore, the determined rejection domain is  $(-\infty, 2.045]$  U[2.045,  $+\infty$ )

(4) Making Decision .

Because the absolute value of the t-value corresponding to X3 is greater than t0.025(29)=2.045, which indicates that  $\alpha = 0.05$ , at

the level of significance, falls into the rejection domain, so the original hypothesis is rejected, and it is considered that there is a significant effect of X3 disposable income per capita of rural residents on the total retail sales of consumer goods in Y. Because the

absolute value of the t-value corresponding to X6 is greater than t0.025(29)=2.045, which indicates that,  $\alpha = 0.05$  at the level of

significance, falls into the rejection domain, so the original hypothesis is rejected and it is considered that there is a significant effect of X6 local finance general budget expenditure on Y total retail sales of consumer goods.

4. Test of the significance of the equation

Test objective: whether all the explanatory variables jointly have a significant effect on the explained variable Y.

(1) Proposing hypothesis: original hypothesis

Alternative hypothesis: at least one of  $\beta j$  is not zero,(j=3,6)

(2) Find the test statistic:  $F^* = 767.4765$ 

(3) Determine the rejection domain:  $[F_{\alpha}(k-1, n-k), +\infty)$ 

 $F_{0.05}(2,29) = 3.33$ 

Therefore, determine the rejection domain as  $[3.33, +\infty)$ 

(4) Make a decision: since  $F^* = 767.4765 > F_{0.05}(2,29) = 3.33$ , falls into the rejection domain, the original hypothesis is rejected and it is considered that all the explanatory variables jointly have a significant effect on Y total retail sales of consumer goods, i.e. the regression equation as a whole is significant.

## 8. POLICY IMPLICATION AND CONCLUSIONS

#### 1. CONCLUSION

After testing the model for multicollinearity, heteroskedasticity and autocorrelation, this paper finds that the disposable income per capita of rural residents and the general budget expenditure of local finance have a significant impact on the total retail sales of consumer goods in Hainan Province. Although the disposable income per capita of urban residents, GDP, and the number of permanent residents at the end of the year do not have a significant effect on the total retail sales of consumer goods in Hainan Province, it does not mean that there is no effect.

2. Policy Recommendations

①Increase the income level of the residential sector by expanding employment.

(2) Increase the proportion of residents' income in the distribution of the national economy. China's residents' disposable income as a proportion of gross domestic product (GDP) is low, and in the future, we should increase the transfer of payments from the government sector to the residents' sector.

(3) Diversify consumer goods categories: Hainan Province's total retail sales of consumer goods can be raised by increasing the variety of consumer goods. Enterprises can be encouraged to develop innovative products to meet diversified consumer needs and further enrich consumer brands and categories.

(iv) Enhance the quality of consumer goods: Hainan Province can strengthen the supervision of the quality of consumer goods and establish an effective quality inspection system to ensure the quality and safety of consumer goods. At the same time, enterprises are encouraged to strengthen product research and development and production processes to improve the quality level of products and increase consumers' trust and satisfaction with them.

(5) Promote the integration of online and offline: Hainan Province can promote the integration of online and offline development and build an intelligent and convenient shopping environment. Traditional retail enterprises can be encouraged to co-operate with e-commerce platforms to promote the interoperability between online and offline, and enhance consumers' shopping experience.

(6) Strengthen the protection of consumers' rights and interests: Hainan province can strengthen the protection of consumers' rights and interests and establish and improve the protection mechanism of consumers' rights and interests. We can intensify the crackdown on false advertisements and unreasonable prices, improve consumers' satisfaction and trust, and promote consumers' willingness to buy goods.

(vii) Optimising the consumer environment: Hainan Province can increase its efforts to improve and build commercial districts and shopping centres to provide a more comfortable and convenient shopping environment. Public parking spaces can be increased and transport facilities improved to facilitate consumers to shopping areas.

(8) Enhance market competition: Hainan Province can encourage competitive pricing and quality services to improve market competitiveness. It can promote the reform of the market access system, reduce the threshold of business access, encourage more enterprises to enter the market, and promote the intensification of market competition.

(9) Support the development of emerging consumer areas: Hainan Province can increase support for emerging consumer areas and promote the development of emerging industries. Entrepreneurs can be encouraged to innovate and start businesses in emerging areas, providing appropriate policy support and financial support to promote the rapid development of emerging consumer areas. To promote the total retail sales of consumer goods in Hainan Province.

#### ACKNOWLEDGMENT

This paper results from an academic exercise for EPPE6154 semester 2 session 2023/2024 funded by EP-2018-001 at the Faculty of Economics and Management, Universiti Kebangsaan Malaysia.

#### REFERENCES

- Yuan, D., Lu, Y., & Zhang, Y. (2022). Factors influencing and forecasting of total retail sales of consumer goods in China. Xiamen University
- 2) Fang, H. L. (2009). Analysis of the fluctuation law and influencing factors of total retail sales of consumer goods. Journal of Shanxi University of Finance and Economics, (7), 22-28.
- Luo, Z. D., & Lai, M. Y. (2013). Forecasting analysis of total retail sales of consumer goods in China. Statistics and Decision, (2), 143-145.
- 4) Quan, J. Y. (2013). Forecasting and analysis of total retail sales of consumer goods in China. Finance and Economics: Second Half of the Month, (11), 26-29.
- 5) Yuan, D., Lu, Y., & Zhang, Y. (2022). Factors influencing and forecasting of total retail sales of consumer goods in China. Operations Research and Fuzziology, 12, 1308.
- 6) Chen, P., Lian, Y., Wang, M., & Wu, Y. (2023). Time series analysis of total retail sales of consumer goods in China. Operations Research and Fuzziology, 13, 919.
- Sun, M., & Zhou, M. (2021). Forecast and development strategies for total retail sales of consumer goods in Shanghai. Journal of Shanghai Economic Management Cadres Institute.
- Cai, H. (2020). Empirical analysis of factors influencing total retail sales of consumer goods in China. Bohai Economic Outlook, 3.

#### APPENDIX

 Table 1 Total retail sales of consumer goods

| period | Total retail<br>sales of<br>consumer<br>goods (billion<br>yuan) | Retail<br>merchandise<br>price index<br>(previous year =<br>100) | 1990=100 | Total retail sales of<br>consumer goods after<br>price adjustment<br>(\$ billion) |
|--------|-----------------------------------------------------------------|------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------|
| 1990   | 40                                                              | 100.6                                                            | 100.0    | 40.000                                                                            |
| 1991   | 45                                                              | 103.1                                                            | 103.1    | 43.647                                                                            |
| 1992   | 58.3                                                            | 108.7                                                            | 112.1    | 52.021                                                                            |
| 1993   | 72.7                                                            | 123.9                                                            | 138.9    | 52.357                                                                            |
| 1994   | 89.6                                                            | 121.6                                                            | 168.8    | 53.066                                                                            |

| 1995 | 109.2  | 111.3 | 187.9 | 58.108  |
|------|--------|-------|-------|---------|
| 1996 | 121.6  | 102.3 | 192.2 | 63.251  |
| 1997 | 133.4  | 99.4  | 191.1 | 69.808  |
| 1998 | 147.8  | 96.5  | 184.4 | 80.149  |
| 1999 | 157.7  | 96.6  | 178.1 | 88.527  |
| 2000 | 172.5  | 99.9  | 178.0 | 96.932  |
| 2001 | 187.5  | 97.7  | 173.9 | 107.842 |
| 2002 | 204.4  | 98.4  | 171.1 | 119.473 |
| 2003 | 191.6  | 100.4 | 171.8 | 111.545 |
| 2004 | 220.2  | 103.4 | 177.6 | 123.980 |
| 2005 | 270.8  | 100.9 | 179.2 | 151.110 |
| 2006 | 313.4  | 101.3 | 181.5 | 172.637 |
| 2007 | 370.9  | 104.2 | 189.2 | 196.076 |
| 2008 | 463.2  | 106.7 | 201.8 | 229.494 |
| 2009 | 537.5  | 98.5  | 198.8 | 270.362 |
| 2010 | 663.8  | 104.6 | 208.0 | 319.207 |
| 2011 | 822.5  | 105.4 | 219.2 | 375.258 |
| 2012 | 950.2  | 102.7 | 225.1 | 422.123 |
| 2013 | 1090.9 | 101.5 | 228.5 | 477.467 |
| 2014 | 1224.5 | 101.2 | 231.2 | 529.586 |
| 2015 | 1409.4 | 99.8  | 230.8 | 610.775 |
| 2016 | 1547.3 | 101   | 233.1 | 663.896 |
| 2017 | 1729.4 | 102   | 237.7 | 727.480 |
| 2018 | 1852.7 | 102.5 | 243.7 | 760.338 |
| 2019 | 1951.1 | 102.5 | 249.8 | 781.191 |
| 2020 | 1974.6 | 101.6 | 253.8 | 778.150 |
| 2021 | 2497.6 | 101.3 | 257.1 | 971.622 |
| 2022 | 2268.4 | 102.1 | 262.5 | 864.308 |

 Table 2. Per capita disposable income of urban residents

|   | period | Disposable                   | Consumer price               |          | Post-adjustment          |
|---|--------|------------------------------|------------------------------|----------|--------------------------|
|   |        | income per<br>urban resident | index for urban<br>residents | 1990=100 | disposable<br>income per |
|   |        |                              | (previous year =             |          | urban resident           |
| _ |        | X2 (yuan)                    | 100)                         |          | X2 (yuan)                |
|   | 1990   | 1650                         | 99.6                         | 100.0    | 1650.000                 |
|   | 1991   | 1799                         | 104                          | 104.0    | 1729.808                 |
|   | 1992   | 2318                         | 109                          | 113.4    | 2044.813                 |
|   | 1993   | 3072                         | 123.7                        | 140.2    | 2190.744                 |
|   | 1994   | 3920                         | 125.6                        | 176.1    | 2225.701                 |
| _ | 1995   | 4770                         | 110.6                        | 194.8    | 2448.748                 |

| 6    |       |       |       | 2         |
|------|-------|-------|-------|-----------|
| 1996 | 4926  | 104.8 | 204.1 | 2413.008  |
| 1997 | 4850  | 101.5 | 207.2 | 2340.670  |
| 1998 | 4845  | 97.6  | 202.2 | 2395.755  |
| 1999 | 5320  | 99.1  | 200.4 | 2654.523  |
| 2000 | 5332  | 101.5 | 203.4 | 2621.193  |
| 2001 | 5800  | 98.8  | 201.0 | 2885.891  |
| 2002 | 6764  | 99    | 199.0 | 3399.541  |
| 2003 | 7185  | 99.4  | 197.8 | 3632.931  |
| 2004 | 7643  | 103.2 | 204.1 | 3744.678  |
| 2005 | 8013  | 101.3 | 206.8 | 3875.577  |
| 2006 | 9250  | 101.2 | 209.2 | 4420.816  |
| 2007 | 10807 | 104.6 | 218.9 | 4937.807  |
| 2008 | 12367 | 106.1 | 232.2 | 5325.716  |
| 2009 | 13465 | 99.5  | 231.1 | 5827.696  |
| 2010 | 15229 | 104.5 | 241.4 | 6307.331  |
| 2011 | 17954 | 105.5 | 254.7 | 7048.278  |
| 2012 | 20446 | 103.2 | 262.9 | 7777.687  |
| 2013 | 22411 | 102.8 | 270.2 | 8292.972  |
| 2014 | 24487 | 102.2 | 276.2 | 8866.121  |
| 2015 | 26356 | 101.2 | 279.5 | 9429.682  |
| 2016 | 28453 | 102.9 | 287.6 | 9893.051  |
| 2017 | 30817 | 103.2 | 296.8 | 10382.761 |
| 2018 | 33349 | 102.4 | 303.9 | 10972.494 |
| 2019 | 36017 | 103.2 | 313.7 | 11482.868 |
| 2020 | 37097 | 101.8 | 319.3 | 11618.066 |
| 2021 | 40213 | 100.5 | 320.9 | 12531.281 |
| 2022 | 40118 | 101.5 | 325.7 | 12316.923 |
|      |       |       |       |           |

Table 3. Per capita disposable income of rural residents

|   | period | Per capita<br>disposable<br>income of<br>rural residents<br>X 3 (yuan) | Rural<br>consumer<br>price index<br>(previous<br>year = 100) | 1990=100 | Post-adjustment<br>disposable income<br>per rural resident X<br>3 (yuan) |
|---|--------|------------------------------------------------------------------------|--------------------------------------------------------------|----------|--------------------------------------------------------------------------|
| - | 1990   | 696                                                                    | 108.1                                                        | 100.0    | 696.000                                                                  |
|   | 1991   | 730                                                                    | 104.4                                                        | 104.4    | 699.234                                                                  |
|   | 1992   | 843                                                                    | 103.4                                                        | 107.9    | 780.920                                                                  |
|   | 1993   | 992                                                                    | 116.5                                                        | 125.8    | 788.796                                                                  |
|   | 1994   | 1305                                                                   | 128.2                                                        | 161.2    | 809.423                                                                  |
|   | 1995   | 1520                                                                   | 118.4                                                        | 190.9    | 796.264                                                                  |
|   | 1996   | 1746                                                                   | 103.7                                                        | 198.0    | 882.021                                                                  |
|   | 1997   | 1917                                                                   | 100.3                                                        | 198.5    | 965.508                                                                  |

| Analysis of Factors Influencing Total Retail Sales of Co | onsumer Goods in Hainan Province, China |
|----------------------------------------------------------|-----------------------------------------|
|----------------------------------------------------------|-----------------------------------------|

|      | 0     |       |       | -        |
|------|-------|-------|-------|----------|
| 1998 | 2026  | 96.6  | 191.8 | 1056.321 |
| 1999 | 2104  | 97.3  | 186.6 | 1127.429 |
| 2000 | 2208  | 100.2 | 187.0 | 1180.796 |
| 2001 | 2262  | 98.3  | 183.8 | 1230.595 |
| 2002 | 2472  | 100.2 | 184.2 | 1342.157 |
| 2003 | 2651  | 100.9 | 185.8 | 1426.505 |
| 2004 | 2898  | 106.4 | 197.7 | 1465.616 |
| 2005 | 3102  | 101.7 | 201.1 | 1542.562 |
| 2006 | 3376  | 102.3 | 205.7 | 1641.072 |
| 2007 | 3949  | 106.3 | 218.7 | 1805.840 |
| 2008 | 4593  | 108.8 | 237.9 | 1930.455 |
| 2009 | 4984  | 99    | 235.5 | 2115.953 |
| 2010 | 5566  | 105.8 | 249.2 | 2233.498 |
| 2011 | 6801  | 107.8 | 268.6 | 2531.607 |
| 2012 | 7816  | 103.2 | 277.2 | 2819.216 |
| 2013 | 8802  | 102.7 | 284.7 | 3091.397 |
| 2014 | 9913  | 102.8 | 292.7 | 3386.767 |
| 2015 | 10858 | 100.5 | 294.2 | 3691.170 |
| 2016 | 11843 | 102.5 | 301.5 | 3927.825 |
| 2017 | 12902 | 101.9 | 307.2 | 4199.264 |
| 2018 | 13989 | 102.5 | 314.9 | 4442.004 |
| 2019 | 15113 | 104   | 327.5 | 4614.341 |
| 2020 | 16279 | 103.8 | 340.0 | 4788.388 |
| 2021 | 18076 | 99.7  | 338.9 | 5332.966 |
| 2022 | 19117 | 102   | 345.7 | 5529.502 |

## Table 4. gross regional product (GDP)

| period | Gross regional<br>product X 4<br>(billion yuan) | Gross regional<br>product index<br>(previous year =<br>100) | 1990=100 | Post-adjustment<br>GDP X 4<br>(\$ billion) |
|--------|-------------------------------------------------|-------------------------------------------------------------|----------|--------------------------------------------|
| 1990   | 102.49                                          | 110.6                                                       | 100.0    | 102.490                                    |
| 1991   | 120.5                                           | 114.9                                                       | 114.9    | 117.761                                    |
| 1992   | 184.9                                           | 141.5                                                       | 162.6    | 166.632                                    |
| 1993   | 260.4                                           | 120.6                                                       | 196.1    | 200.958                                    |
| 1994   | 332                                             | 111.2                                                       | 218.0    | 223.465                                    |
| 1995   | 363.3                                           | 103.8                                                       | 226.3    | 231.957                                    |
| 1996   | 389.7                                           | 104.7                                                       | 237.0    | 242.859                                    |
| 1997   | 411.2                                           | 106.8                                                       | 253.1    | 259.373                                    |
| 1998   | 442.1                                           | 108.4                                                       | 274.3    | 281.161                                    |
| 1999   | 476.7                                           | 108.5                                                       | 297.6    | 305.059                                    |
| 2000   | 526.8                                           | 109                                                         | 324.4    | 332.515                                    |

| 2001 | 579.2  | 109.1 | 354.0  | 362.774  |
|------|--------|-------|--------|----------|
| 2002 | 642.7  | 109.6 | 387.9  | 397.600  |
| 2003 | 714    | 110.6 | 429.1  | 439.745  |
| 2004 | 802.7  | 109.7 | 470.7  | 482.401  |
| 2005 | 884.9  | 110.5 | 520.1  | 533.053  |
| 2006 | 1027.5 | 110.6 | 575.2  | 589.556  |
| 2007 | 1234   | 115.8 | 666.1  | 682.706  |
| 2008 | 1474.7 | 110.3 | 734.7  | 753.025  |
| 2009 | 1620.3 | 111.7 | 820.7  | 841.129  |
| 2010 | 2020.5 | 116   | 952.0  | 975.710  |
| 2011 | 2463.8 | 112.2 | 1068.1 | 1094.746 |
| 2012 | 2789.4 | 109.4 | 1168.6 | 1197.652 |
| 2013 | 3115.9 | 109.6 | 1280.7 | 1312.627 |
| 2014 | 3449   | 108.6 | 1390.9 | 1425.513 |
| 2015 | 3734.2 | 107.8 | 1499.4 | 1536.703 |
| 2016 | 4090.2 | 107.5 | 1611.8 | 1651.956 |
| 2017 | 4497.5 | 107   | 1724.6 | 1767.592 |
| 2018 | 4910.7 | 105.8 | 1824.7 | 1870.113 |
| 2019 | 5330.8 | 105.8 | 1930.5 | 1978.579 |
| 2020 | 5566.2 | 103.5 | 1998.1 | 2047.830 |
| 2021 | 6504.1 | 111.3 | 2223.9 | 2279.234 |
| 2022 | 6818.2 | 100.2 | 2228.3 | 2283.793 |
|      |        |       |        |          |

## Table 5. Year-end resident population

| period | Resident population at the end of the year X5 (million) |
|--------|---------------------------------------------------------|
| 1990   | 663                                                     |
| 1991   | 674                                                     |
| 1992   | 686                                                     |
| 1993   | 701                                                     |
| 1994   | 711                                                     |
| 1995   | 724                                                     |
| 1996   | 734                                                     |
| 1997   | 743                                                     |
| 1998   | 753                                                     |
| 1999   | 762                                                     |
| 2000   | 789                                                     |
| 2001   | 796                                                     |
| 2002   | 803                                                     |
| 2003   | 811                                                     |
| 2004   | 818                                                     |
| 2005   | 828                                                     |

| 2006 | 836  |
|------|------|
| 2007 | 845  |
| 2008 | 854  |
| 2009 | 864  |
| 2010 | 869  |
| 2011 | 890  |
| 2012 | 910  |
| 2013 | 920  |
| 2014 | 936  |
| 2015 | 945  |
| 2016 | 957  |
| 2017 | 972  |
| 2018 | 982  |
| 2019 | 995  |
| 2020 | 1012 |
| 2021 | 1020 |
| 2022 | 1027 |
|      |      |

## Table 6. General budget expenditures of local finances

| period | General budget<br>expenditure of<br>local finance X6<br>(billion yuan) | Consumer price<br>index (previous<br>year = 100) | 1990=100 | Post-adjustment<br>local finance<br>general budget<br>expenditure X6<br>(billion yuan) |
|--------|------------------------------------------------------------------------|--------------------------------------------------|----------|----------------------------------------------------------------------------------------|
| 1990   | 17.42                                                                  | 102.1                                            | 100.0    | 17.420                                                                                 |
| 1991   | 19.39                                                                  | 103.9                                            | 103.9    | 18.662                                                                                 |
| 1992   | 25.36                                                                  | 108.7                                            | 112.9    | 22.455                                                                                 |
| 1993   | 38.52                                                                  | 123.3                                            | 139.3    | 27.662                                                                                 |
| 1994   | 40.01                                                                  | 126.7                                            | 176.4    | 22.677                                                                                 |
| 1995   | 42.39                                                                  | 113.5                                            | 200.3    | 21.168                                                                                 |
| 1996   | 45.16                                                                  | 104.3                                            | 208.9    | 21.622                                                                                 |
| 1997   | 48.48                                                                  | 100.8                                            | 210.5    | 23.027                                                                                 |
| 1998   | 54.91                                                                  | 97.3                                             | 204.9    | 26.805                                                                                 |
| 1999   | 56.78                                                                  | 98.3                                             | 201.4    | 28.197                                                                                 |
| 2000   | 64.12                                                                  | 101.1                                            | 203.6    | 31.496                                                                                 |
| 2001   | 78.94                                                                  | 98.5                                             | 200.5    | 39.366                                                                                 |
| 2002   | 92.26                                                                  | 99.5                                             | 199.5    | 46.239                                                                                 |
| 2003   | 105.4                                                                  | 100.1                                            | 199.7    | 52.772                                                                                 |
| 2004   | 127.2                                                                  | 104.4                                            | 208.5    | 61.003                                                                                 |
| 2005   | 151.24                                                                 | 101.5                                            | 211.6    | 71.460                                                                                 |
| 2006   | 174.54                                                                 | 101.5                                            | 214.8    | 81.250                                                                                 |
| 2007   | 245.2                                                                  | 105.1                                            | 225.8    | 108.605                                                                                |

|      | _       |       |       |         |
|------|---------|-------|-------|---------|
| 2008 | 357.97  | 106.9 | 241.4 | 148.319 |
| 2009 | 486.06  | 99.3  | 239.7 | 202.811 |
| 2010 | 581.34  | 104.8 | 251.2 | 231.457 |
| 2011 | 778.8   | 106.1 | 266.5 | 292.247 |
| 2012 | 911.67  | 103.2 | 275.0 | 331.499 |
| 2013 | 1011.17 | 102.8 | 282.7 | 357.665 |
| 2014 | 1099.74 | 102.4 | 289.5 | 379.876 |
| 2015 | 1239.43 | 101   | 292.4 | 423.889 |
| 2016 | 1376.48 | 102.8 | 300.6 | 457.939 |
| 2017 | 1443.97 | 102.8 | 309.0 | 467.307 |
| 2018 | 1691.3  | 102.5 | 316.7 | 534.000 |
| 2019 | 1858.6  | 103.4 | 327.5 | 567.526 |
| 2020 | 1972.46 | 102.3 | 335.0 | 588.752 |
| 2021 | 1971.37 | 100.3 | 336.0 | 586.667 |
| 2022 | 2097.37 | 101.6 | 341.4 | 614.334 |

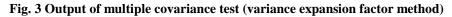

| New Proc Object Print | Name Freeze | Estimate Forecas | st Stats Reside | 5        |
|-----------------------|-------------|------------------|-----------------|----------|
| Dependent Variable: ' | Y           |                  |                 |          |
| Method: Least Square  |             |                  |                 |          |
| Date: 01/05/24 Time   | : 19:49     |                  |                 |          |
| Sample: 1990 2022     |             |                  |                 |          |
| ncluded observations  | : 33        |                  |                 |          |
| Variable              | Coefficient | Std. Error       | t-Statistic     | Prob.    |
| с                     | 450.9463    | 136.4054         | 3.305927        | 0.0027   |
| X2                    | 0.032594    | 0.025991         | 1.254071        | 0.2206   |
| X3                    | 0.100225    | 0.051850         | 1.932975        | 0.0638   |
| X4                    | 0.220017    | 0.203638         | 1.080434        | 0.2895   |
| X5                    | -0.827083   | 0.223536         | -3.699997       | 0.0010   |
| X6                    | -0.211674   | 0.247972         | -0.853622       | 0.4008   |
| R-squared             | 0.995471    | Mean depen       | dent var        | 317.0238 |
| Adjusted R-squared    | 0.994632    | S.D. depend      | ent var         | 293.6270 |
| S.E. of regression    | 21.51345    | Akaike info c    | riterion        | 9.138199 |
| Sum squared resid     | 12496.37    | Schwarz crit     | erion           | 9.410292 |
| Log likelihood        | -144.7803   | Hannan-Qui       | nn criter.      | 9.229750 |
| F-statistic           | 1186.808    | Durbin-Wats      | on stat         | 1.618275 |
| Prob(F-statistic)     | 0.000000    |                  |                 |          |

Fig. 1 Output of model building (using OLS method)

| Group: UN                                                  | ITITLED Work | file: UNTITLED | ::Untitled\ |          |          | × |  |
|------------------------------------------------------------|--------------|----------------|-------------|----------|----------|---|--|
| View Proc Object Print Name Freeze Sample Sheet Stats Spec |              |                |             |          |          |   |  |
|                                                            |              | Cor            | relation    |          |          |   |  |
|                                                            | X2           | X3             | X4          | X5       | X6       |   |  |
| X2                                                         | 1.000000     | 0.993496       | 0.997943    | 0.969666 | 0.992955 |   |  |
| Х3                                                         | 0.993496     | 1.000000       | 0.998049    | 0.959404 | 0.990371 |   |  |
| X4                                                         | 0.997943     | 0.998049       | 1.000000    | 0.964585 | 0.993661 |   |  |
| X5                                                         | 0.969666     | 0.959404       | 0.964585    | 1.000000 | 0.940665 |   |  |
| X6                                                         | 0.992955     | 0.990371       | 0.993661    | 0.940665 | 1.000000 |   |  |
|                                                            | -            |                |             |          |          |   |  |
|                                                            |              |                |             |          |          |   |  |

Fig. 2 Output of multiple covariance test (correlation coefficient method)

| iew Proc Object Pr   | int Name Freeze | Estimate Forecas | t Stats Resids |   |
|----------------------|-----------------|------------------|----------------|---|
| Variance Inflation F | actors          |                  |                |   |
| Date: 01/05/24 Tir   | ne: 01:48       |                  |                |   |
| ample: 1990 2022     |                 |                  |                |   |
| ncluded observatio   |                 |                  |                |   |
|                      |                 |                  |                | ġ |
|                      | Coefficient     | Uncentered       | Centered       |   |
| Variable             | Variance        | VIF              | VIF            |   |
| С                    | 18606.44        | 1326.652         | NA             |   |
| X2                   | 0.000676        | 2208.123         | 616.7513       |   |
| X3                   | 0.002688        | 1411.789         | 425.0694       |   |
| X4                   | 0.041468        | 3697.195         | 1418.804       |   |
| X5                   | 0.049968        | 2575.053         | 41.16365       |   |
|                      |                 |                  |                |   |



| G Group: UNTITLED Workfile: UNTITLED::Untitled |                                                            |          |          |          |          |  |  |  |
|------------------------------------------------|------------------------------------------------------------|----------|----------|----------|----------|--|--|--|
| View Proc Obje                                 | View Proc Object Print Name Freeze Sample Sheet Stats Spec |          |          |          |          |  |  |  |
|                                                | Correlation                                                |          |          |          |          |  |  |  |
|                                                | LNX2 LNX3 LNX4 LNX5 LNX6                                   |          |          |          |          |  |  |  |
|                                                | LNX2                                                       | LNX3     | LNX4     | LNX5     | LNX6     |  |  |  |
| LNX2                                           | 1.000000                                                   | 0.993536 | 0.993196 | 0.986317 | 0.993013 |  |  |  |
| LNX3                                           | 0.993536                                                   | 1.000000 | 0.988446 | 0.991385 | 0.984343 |  |  |  |
| LNX4                                           | 0.993196                                                   | 0.988446 | 1.000000 | 0.993763 | 0.981207 |  |  |  |
| LNX5                                           | 0.986317                                                   | 0.991385 | 0.993763 | 1.000000 | 0.969362 |  |  |  |
| LNX6                                           | 0.993013                                                   | 0.984343 | 0.981207 | 0.969362 | 1.000000 |  |  |  |
|                                                |                                                            |          |          |          |          |  |  |  |
|                                                |                                                            |          |          |          |          |  |  |  |
|                                                | 4                                                          |          |          |          | ▶        |  |  |  |

Fig. 4 Calculation of correlation coefficients of transformed explanatory variables (output results)

| /iew Proc Object Prin | nt Name Freeze | Estimate Forecas | t Stats Resid |
|-----------------------|----------------|------------------|---------------|
| Variance Inflation Fa | ictors         |                  |               |
| Date: 01/05/24 Tim    | e: 11:05       |                  |               |
| Sample: 1990 2022     |                |                  |               |
| Included observation  | ns: 33         |                  |               |
|                       | Coefficient    | Uncentered       | Centered      |
| Variable              | Variance       | VIF              | VIF           |
| С                     | 39090134       | 483713.2         | NA            |
| LNX2                  | 63697.73       | 56620.79         | 336.6257      |
| LNX3                  | 39701.22       | 27928.55         | 214.9180      |
| LNX4                  | 25924.09       | 13434.82         | 266.9266      |
| LNX5                  | 1252794.       | 702233.8         | 255.2075      |
| LNX6                  | 5178,443       | 1481.089         | 107,4176      |

Fig. 5 Calculation of variance expansion factors for transformed explanatory variables

| iew Proc Object Print                                                                     | Name Freeze  | Estimate Fore | cast Stats Reside |          |
|-------------------------------------------------------------------------------------------|--------------|---------------|-------------------|----------|
| Dependent Variable: N<br>Method: Least Square<br>Date: 01/05/24 Time<br>Sample: 1990 2022 | s<br>: 11:36 |               |                   |          |
| Variable                                                                                  | Coefficient  | Std. Erro     | r t-Statistic     | Prob.    |
| с                                                                                         | -143.2829    | 13.1058       | 7 -10.93273       | 0.0000   |
| X2                                                                                        | 0.080081     | 0.001936      | 6 41.37209        | 0.0000   |
| R-squared                                                                                 | 0.982211     | Mean dep      | endent var        | 317.0238 |
| Adjusted R-squared                                                                        | 0.981637     | S.D. depe     | ndent var         | 293.6270 |
| S.E. of regression                                                                        | 39.78928     | Akaike infe   | o criterion       | 10.26376 |
| Sum squared resid                                                                         | 49078.78     | Schwarz o     | riterion          | 10.35446 |
| og likelihood                                                                             | -167.3521    | Hannan-C      | uinn criter.      | 10.29428 |
| -statistic                                                                                | 1711.649     | Durbin-Wa     | atson stat        | 0.610387 |
| Prob(F-statistic)                                                                         | 0.000000     |               |                   |          |

Fig. 6 X2 simple regression output

| Dura Ohing Diat                                                                                                      | Name Francis I |                       | A CALL D. 14    |          |
|----------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|-----------------|----------|
| iew Proc Object Print                                                                                                | Name_Freeze    | stimate Forecas       | st Stats Resids | 1        |
| Dependent Variable: Y<br>Method: Least Square<br>Date: 01/05/24 Time:<br>Sample: 1990 2022<br>Included observations: | s<br>11:35     |                       |                 |          |
| Variable                                                                                                             | Coefficient    | Std. Error            | t-Statistic     | Prob.    |
| С                                                                                                                    | -121.4891      | 9.059106              | -13.41072       | 0.0000   |
| X3                                                                                                                   | 0.193277       | 0.003338              | 57.90087        | 0.0000   |
| R-squared                                                                                                            | 0.990838       | Mean depen            | dent var        | 317.0238 |
| Adjusted R-squared                                                                                                   | 0.990542       | S.D. depend           | ent var         | 293.6270 |
| S.E. of regression                                                                                                   | 28.55534       | Akaike info criterion |                 | 9.600257 |
| Sum squared resid                                                                                                    | 25277.63       | Schwarz criterion     |                 | 9.690954 |
| Log likelihood                                                                                                       | -156.4042      | Hannan-Quinn criter.  |                 | 9.630773 |
| F-statistic                                                                                                          | 3352.510       | Durbin-Wats           | on stat         | 1.327461 |
| Prob(F-statistic)                                                                                                    | 0.000000       |                       |                 |          |

## Fig. 7 X3 simple regression output

| iew Proc Object Print                                                                                               | Name Freeze E | stimate Forecas      | st Stats Resids |          |
|---------------------------------------------------------------------------------------------------------------------|---------------|----------------------|-----------------|----------|
| Dependent Variable: Y<br>Method: Least Square<br>Date: 01/05/24 Time:<br>Sample: 1990 2022<br>ncluded observations: | s<br>11:32    |                      |                 |          |
| Variable                                                                                                            | Coefficient   | Std. Error           | t-Statistic     | Prob.    |
| С                                                                                                                   | -47.59908     | 8.268831             | -5.756446       | 0.0000   |
| X4                                                                                                                  | 0.415370      | 0.007395             | 56.17226        | 0.0000   |
| R-squared                                                                                                           | 0.990271      | Mean depen           | dent var        | 317.0238 |
| Adjusted R-squared                                                                                                  | 0.989957      | S.D. depend          | ent var         | 293.6270 |
| S.E. of regression                                                                                                  | 29.42566      | Akaike info c        | riterion        | 9.660303 |
| Sum squared resid                                                                                                   | 26841.95      | Schwarz criterion    |                 | 9.751000 |
| _og likelihood                                                                                                      | -157.3950     | Hannan-Quinn criter. |                 | 9.690820 |
| F-statistic                                                                                                         | 3155.323      | Durbin-Wats          | on stat         | 0.976635 |
| Prob(F-statistic)                                                                                                   | 0.000000      |                      |                 |          |

Fig. 8 X4 simple regression output

| iew Proc Object Print                                                                                                | Name Freeze | Estimate F | orecast            | Stats    | Resids |          |
|----------------------------------------------------------------------------------------------------------------------|-------------|------------|--------------------|----------|--------|----------|
| Dependent Variable: Y<br>Method: Least Square<br>Date: 01/05/24 Time:<br>Sample: 1990 2022<br>Included observations: | s<br>11:38  |            |                    |          |        |          |
| Variable                                                                                                             | Coefficient | Std. E     | rror               | t-Sta    | tistic | Prob.    |
| С                                                                                                                    | -1820.825   | 137.4      | 117                | -13.2    | 5087   | 0.000    |
| X5                                                                                                                   | 2.534998    | 0.161      | 631                | 15.6     | 3385   | 0.0000   |
| R-squared                                                                                                            | 0.888080    | Mean       | Mean dependent var |          | r      | 317.0238 |
| Adjusted R-squared                                                                                                   | 0.884469    | S.D. de    | pende              | nt var   |        | 293.6270 |
| S.E. of regression                                                                                                   | 99.80320    | Akaike     | info cri           | terion   |        | 12.10297 |
| Sum squared resid                                                                                                    | 308781.0    | Schwa      | Schwarz criterion  |          |        | 12.1936  |
| Log likelihood                                                                                                       | -197.6990   | Hanna      | n-Quini            | n criter | r.     | 12.13349 |
| F-statistic                                                                                                          | 245,9830    | Durbin     | Durbin-Watson stat |          |        | 0.209743 |
| -statistic                                                                                                           |             |            |                    |          |        |          |

## Fig. 9 X5 simple regression output

| View Proc Object Print                                                                                             | Name Freeze  | Estimate | Forecast   | Stats   | Resids  | A DECK OF A |
|--------------------------------------------------------------------------------------------------------------------|--------------|----------|------------|---------|---------|-----------------------------------------------------------------------------------------------------------------|
| Dependent Variable: \<br>Method: Least Square<br>Date: 01/05/24 Time<br>Sample: 1990 2022<br>Included observations | s<br>: 11:41 |          |            |         |         |                                                                                                                 |
| Variable                                                                                                           | Coefficient  | Std.     | Error      | t-Sta   | atistic | Prob.                                                                                                           |
| с                                                                                                                  | 31.80401     | 9.13     | 7427       | 3.48    | 0631    | 0.0015                                                                                                          |
| X6                                                                                                                 | 1.362875     | 0.03     | 0784       | 44.2    | 7289    | 0.0000                                                                                                          |
| R-squared                                                                                                          | 0.984431     | Mean     | depend     | ent va  | ır      | 317.0238                                                                                                        |
| Adjusted R-squared                                                                                                 | 0.983928     | S.D. d   | lepende    | nt var  |         | 293.6270                                                                                                        |
| S.E. of regression                                                                                                 | 37.22423     | Akaike   | info cri   | terion  |         | 10.13049                                                                                                        |
| Sum squared resid                                                                                                  | 42954.94     | Schwa    | arz criter | rion    |         | 10.22119                                                                                                        |
| Log likelihood                                                                                                     | -165.1531    | Hanna    | an-Quini   | n crite | r.      | 10.16101                                                                                                        |
| F-statistic                                                                                                        | 1960.089     | Durbin   | n-Watso    | n stat  |         | 1.674513                                                                                                        |
| Prob(F-statistic)                                                                                                  | 0.00000      |          |            |         |         |                                                                                                                 |

## Fig. 10 X6 simple regression output

| ew Proc Object Print                                                                                                 | Name Freeze | Estimate Foreca | st Stats Resids |          |
|----------------------------------------------------------------------------------------------------------------------|-------------|-----------------|-----------------|----------|
| Dependent Variable: Y<br>Method: Least Square<br>Date: 01/05/24 Time:<br>Sample: 1990 2022<br>Included observations: | s<br>11:57  |                 |                 |          |
| Variable                                                                                                             | Coefficient | Std. Error      | t-Statistic     | Prob.    |
| С                                                                                                                    | -125.8917   | 9.890187        | -12.72895       | 0.0000   |
| X2                                                                                                                   | 0.013281    | 0.012162        | 1.091990        | 0.2835   |
| X3                                                                                                                   | 0.161570    | 0.029226        | 5.528375        | 0.0000   |
| R-squared                                                                                                            | 0.991188    | Mean deper      | ident var       | 317.0238 |
| Adjusted R-squared                                                                                                   | 0.990601    | S.D. depend     | lent var        | 293.6270 |
| S.E. of regression                                                                                                   | 28.46711    | Akaike info     | riterion        | 9.621884 |
| Sum squared resid                                                                                                    | 24311.30    | Schwarz crit    | erion           | 9.757930 |
| Log likelihood                                                                                                       | -155.7611   | Hannan-Qui      | nn criter.      | 9.667660 |
| F-statistic                                                                                                          | 1687.257    | Durbin-Wats     | son stat        | 1.305021 |
| Prob(F-statistic)                                                                                                    | 0.000000    |                 |                 |          |

Fig. 11 X2, X3 simple regression output results

|                                                                                                                      | Name Freeze | Estimate Foreca   | st stats Resids | 1        |
|----------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-----------------|----------|
| Dependent Variable: Y<br>Method: Least Square<br>Date: 01/05/24 Time:<br>Sample: 1990 2022<br>Included observations: | s<br>12:13  |                   |                 |          |
| Variable                                                                                                             | Coefficient | Std. Error        | t-Statistic     | Prob.    |
| с                                                                                                                    | -90.34245   | 21.59912          | -4.182691       | 0.0002   |
| X3                                                                                                                   | 0.110894    | 0.052218          | 2.123666        | 0.0421   |
| X4                                                                                                                   | 0.177445    | 0.112254          | 1.580744        | 0.1244   |
| R-squared                                                                                                            | 0.991542    | Mean depen        | dent var        | 317.0238 |
| Adjusted R-squared                                                                                                   | 0.990979    | S.D. depend       | ent var         | 293.6270 |
| S.E. of regression                                                                                                   | 27.88912    | Akaike info o     | riterion        | 9.580858 |
| Sum squared resid                                                                                                    | 23334.09    | Schwarz criterion |                 | 9.716904 |
| Log likelihood                                                                                                       | -155.0842   | Hannan-Qui        | nn criter.      | 9.626634 |
| F-statistic                                                                                                          | 1758.546    | Durbin-Wats       | on stat         | 1.260212 |
| Prob(F-statistic)                                                                                                    | 0.000000    |                   |                 |          |

Fig. 12 Simple regression output results for X3 and X4

| /iew Proc Object Print                                                                                               | Name Freeze E | Estimate Forecas | t Stats Resids |          |
|----------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------------|----------|
| Dependent Variable: Y<br>Method: Least Square<br>Date: 01/05/24 Time:<br>Sample: 1990 2022<br>Included observations: | s<br>12:15    |                  |                |          |
| Variable                                                                                                             | Coefficient   | Std. Error       | t-Statistic    | Prob.    |
| С                                                                                                                    | 171.3530      | 101.4405         | 1.689197       | 0.1016   |
| X3                                                                                                                   | 0.222830      | 0.010636         | 20.95066       | 0.0000   |
| X5                                                                                                                   | -0.426751     | 0.147350         | -2.896177      | 0.0070   |
| R-squared                                                                                                            | 0.992840      | Mean depen       | dent var       | 317.0238 |
| Adjusted R-squared                                                                                                   | 0.992363      | S.D. depend      | ent var        | 293.6270 |
| S.E. of regression                                                                                                   | 25.66086      | Akaike info c    | riterion       | 9.414319 |
| Sum squared resid                                                                                                    | 19754.40      | Schwarz crite    | erion          | 9.550365 |
| Log likelihood                                                                                                       | -152.3363     | Hannan-Quir      | nn criter.     | 9.460095 |
| F-statistic                                                                                                          | 2079.930      | Durbin-Wats      | on stat        | 1.624680 |
| Prob(F-statistic)                                                                                                    | 0.000000      |                  |                |          |

## Fig. 13 Simple regression output results for X3 and X5

| iew Proc Object Print                                                                                                | Name Freeze | Estimate Forecas  | st Stats Reside | ;        |
|----------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-----------------|----------|
| Dependent Variable: Y<br>Method: Least Square<br>Date: 01/05/24 Time:<br>Sample: 1990 2022<br>Included observations: | s<br>12:22  |                   |                 |          |
| Variable                                                                                                             | Coefficient | Std. Error        | t-Statistic     | Prob.    |
| с                                                                                                                    | -72.09063   | 18.35369          | -3.927855       | 0.0005   |
| X3                                                                                                                   | 0.129450    | 0.021501          | 6.020595        | 0.0000   |
| X6                                                                                                                   | 0.455927    | 0.152106          | 2.997432        | 0.0054   |
| R-squared                                                                                                            | 0.992949    | Mean depen        | dent var        | 317.0238 |
| Adjusted R-squared                                                                                                   | 0.992479    | S.D. depend       | ent var         | 293.6270 |
| S.E. of regression                                                                                                   | 25.46370    | Akaike info c     | riterion        | 9.398893 |
| Sum squared resid                                                                                                    | 19452.01    | Schwarz criterion |                 | 9.534939 |
| Log likelihood                                                                                                       | -152.0817   | Hannan-Quir       | nn criter.      | 9.444669 |
| F-statistic                                                                                                          | 2112.497    | Durbin-Wats       | on stat         | 2.141959 |
| Prob(F-statistic)                                                                                                    | 0.000000    |                   |                 |          |

Fig. 14 Simple regression output results for X3 and X6

| new Proc Object Print                                                                                                | Name Freeze | stimate Forecas | st Stats Resids | 5        |
|----------------------------------------------------------------------------------------------------------------------|-------------|-----------------|-----------------|----------|
| Dependent Variable: Y<br>Method: Least Square<br>Date: 01/05/24 Time:<br>Sample: 1990 2022<br>Included observations: | s<br>12:53  |                 |                 |          |
| Variable                                                                                                             | Coefficient | Std. Error      | t-Statistic     | Prob.    |
| С                                                                                                                    | -62.47716   | 24.55284        | -2.544601       | 0.0165   |
| X2                                                                                                                   | -0.008019   | 0.013414        | -0.597802       | 0.5546   |
| X3                                                                                                                   | 0.139607    | 0.027588        | 5.060402        | 0.0000   |
| X6                                                                                                                   | 0.520121    | 0.187547        | 2.773284        | 0.0096   |
| R-squared                                                                                                            | 0.993035    | Mean depen      | dent var        | 317.0238 |
| Adjusted R-squared                                                                                                   | 0.992315    | S.D. depend     | ent var         | 293.6270 |
| S.E. of regression                                                                                                   | 25.74090    | Akaike info c   | riterion        | 9.447252 |
| Sum squared resid                                                                                                    | 19215.22    | Schwarz crite   | erion           | 9.628646 |
| Log likelihood                                                                                                       | -151.8797   | Hannan-Qui      | nn criter.      | 9.508285 |
| F-statistic                                                                                                          | 1378.282    | Durbin-Wats     | on stat         | 2.294329 |
| Prob(F-statistic)                                                                                                    | 0.000000    |                 |                 |          |

## Fig. 15 Simple regression outputs for X2, X3 and X6

| /iew Proc Object Print                                                                                          | Name Freeze   | Estimate Foreca | ast Stats Reside | 5        |
|-----------------------------------------------------------------------------------------------------------------|---------------|-----------------|------------------|----------|
| Dependent Variable:<br>Method: Least Squar<br>Date: 01/05/24 Time<br>Sample: 1990 2022<br>Included observations | es<br>: 12:58 |                 |                  |          |
| Variable                                                                                                        | Coefficient   | Std. Error      | t-Statistic      | Prob.    |
| С                                                                                                               | -73.10231     | 21.29399        | -3.433002        | 0.0018   |
| X3                                                                                                              | 0.133823      | 0.049410        | 2.708410         | 0.0112   |
| X4                                                                                                              | -0.012910     | 0.130810        | -0.098693        | 0.9221   |
| X6                                                                                                              | 0.467504      | 0.194133        | 2.408169         | 0.0226   |
| R-squared                                                                                                       | 0.992952      | Mean depe       | ndent var        | 317.0238 |
| Adjusted R-squared                                                                                              | 0.992223      | S.D. depen      | dent var         | 293.6270 |
| S.E. of regression                                                                                              | 25.89467      | Akaike info     | criterion        | 9.459164 |
| Sum squared resid                                                                                               | 19445.48      | Schwarz cri     | terion           | 9.640558 |
| Log likelihood                                                                                                  | -152.0762     | Hannan-Qu       | inn criter.      | 9.520197 |
| F-statistic                                                                                                     | 1361.847      | Durbin-Wat      | son stat         | 2.172120 |
|                                                                                                                 | 0.000000      |                 |                  |          |

## Figure 16 Simple regression outputs for X3, X4 and X6

| new proc object print                                                                                                | Name Freeze | Estimate Forecas      | t Stats Resids |          |
|----------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|----------------|----------|
| Dependent Variable: Y<br>Method: Least Square<br>Date: 01/05/24 Time:<br>Sample: 1990 2022<br>Included observations: | s<br>13:01  |                       |                |          |
| Variable                                                                                                             | Coefficient | Std. Error            | t-Statistic    | Prob.    |
| С                                                                                                                    | 152.0620    | 93.59245              | 1.624725       | 0.1150   |
| X3                                                                                                                   | 0.165070    | 0.024717              | 6.678421       | 0.0000   |
| X5                                                                                                                   | -0.340250   | 0.139702              | -2.435543      | 0.0212   |
| X6                                                                                                                   | 0.369799    | 0.145328              | 2.544583       | 0.0165   |
| R-squared                                                                                                            | 0.994147    | Mean dependent var    |                | 317.0238 |
| Adjusted R-squared                                                                                                   | 0.993541    | S.D. dependent var    |                | 293.6270 |
| S.E. of regression                                                                                                   | 23.59779    | Akaike info criterion |                | 9.273396 |
| Sum squared resid                                                                                                    | 16148.81    | Schwarz criterion     |                | 9.454790 |
| Log likelihood                                                                                                       | -149.0110   | Hannan-Quinn criter.  |                | 9.334429 |
| F-statistic                                                                                                          | 1641.832    | Durbin-Wats           | on stat        | 2.355587 |
| Prob(F-statistic)                                                                                                    | 0.000000    |                       |                |          |

Figure 17. Simple regression outputs for X3, X5 and X6

|                                                                                                                       | THE TREAT                                                                                                              | sumate Foreca                                                                                                                       | st Stats Reside                                                                                                                   |                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Heteroskedasticity Tes                                                                                                | st: White                                                                                                              |                                                                                                                                     |                                                                                                                                   |                                                                                                                      |
| F-statistic                                                                                                           | 25.46609                                                                                                               | Prob. F(5,27                                                                                                                        | 0.0000                                                                                                                            |                                                                                                                      |
| Obs*R-squared                                                                                                         | 27.22667                                                                                                               | Prob. Chi-Square(5)                                                                                                                 |                                                                                                                                   | 0.0001                                                                                                               |
| Scaled explained SS                                                                                                   | 61.59572                                                                                                               | Prob. Chl-Square(5)                                                                                                                 |                                                                                                                                   | 0.0000                                                                                                               |
| Test Equation:                                                                                                        |                                                                                                                        |                                                                                                                                     |                                                                                                                                   |                                                                                                                      |
| Dependent Variable: R                                                                                                 | ESID^2                                                                                                                 |                                                                                                                                     |                                                                                                                                   |                                                                                                                      |
| Method: Least Square                                                                                                  |                                                                                                                        |                                                                                                                                     |                                                                                                                                   |                                                                                                                      |
| Date: 02/05/24 Time:                                                                                                  |                                                                                                                        |                                                                                                                                     |                                                                                                                                   |                                                                                                                      |
| Sample: 1990 2022                                                                                                     |                                                                                                                        |                                                                                                                                     |                                                                                                                                   |                                                                                                                      |
| Included observations:                                                                                                | 33                                                                                                                     |                                                                                                                                     |                                                                                                                                   |                                                                                                                      |
|                                                                                                                       |                                                                                                                        |                                                                                                                                     |                                                                                                                                   | 1725342.244                                                                                                          |
| Variable                                                                                                              | Coefficient                                                                                                            | Std. Error                                                                                                                          | t-Statistic                                                                                                                       | Prob.                                                                                                                |
| Variable                                                                                                              | Coefficient<br>4971.049                                                                                                | Std. Error<br>2211.068                                                                                                              | t-Statistic<br>2.248257                                                                                                           |                                                                                                                      |
| Look                                                                                                                  |                                                                                                                        |                                                                                                                                     |                                                                                                                                   | Prob.<br>0.0329<br>0.0677                                                                                            |
| c                                                                                                                     | 4971.049                                                                                                               | 2211.068                                                                                                                            | 2.248257                                                                                                                          | 0.0329                                                                                                               |
| C<br>X3^2                                                                                                             | 4971.049<br>0.006818                                                                                                   | 2211.068<br>0.003582                                                                                                                | 2.248257<br>1.903176                                                                                                              | 0.0329                                                                                                               |
| C<br>X3^2<br>X3*X6                                                                                                    | 4971.049<br>0.006818<br>-0.083008                                                                                      | 2211.068<br>0.003582<br>0.051930                                                                                                    | 2.248257<br>1.903176<br>-1.598450                                                                                                 | 0.0329<br>0.0677<br>0.1216<br>0.0460                                                                                 |
| C<br>X3^2<br>X3*X6<br>X3                                                                                              | 4971.049<br>0.006818<br>-0.083008<br>-11.87220                                                                         | 2211.068<br>0.003582<br>0.051930<br>5.675133                                                                                        | 2.248257<br>1.903176<br>-1.598450<br>-2.091969                                                                                    | 0.0329<br>0.0677<br>0.1216<br>0.0460<br>0.1998                                                                       |
| C<br>X3^2<br>X3*X6<br>X3<br>X6^2<br>X6                                                                                | 4971.049<br>0.006818<br>-0.083008<br>-11.87220<br>0.248807                                                             | 2211.068<br>0.003582<br>0.051930<br>5.675133<br>0.189293                                                                            | 2.248257<br>1.903176<br>-1.598450<br>-2.091969<br>1.314402<br>1.842441                                                            | 0.0329<br>0.0677<br>0.1216<br>0.0460<br>0.1998<br>0.0764                                                             |
| C<br>X3*2<br>X3*X6<br>X3<br>X6*2<br>X6<br>R-squared                                                                   | 4971.049<br>0.006818<br>-0.083008<br>-11.87220<br>0.248807<br>74.54566                                                 | 2211.068<br>0.003582<br>0.051930<br>5.675133<br>0.189293<br>40.46028                                                                | 2.248257<br>1.903176<br>-1.598450<br>-2.091969<br>1.314402<br>1.842441<br>dent var                                                | 0.0329<br>0.0677<br>0.1216<br>0.0460<br>0.1998<br>0.0764<br>589.4548                                                 |
| C<br>X3*2<br>X3*X6<br>X3<br>X6*2<br>X6<br>R-squared<br>Adjusted R-squared                                             | 4971.049<br>0.006818<br>-0.083008<br>-11.87220<br>0.248807<br>74.54566<br>0.825051                                     | 2211.068<br>0.003582<br>0.051930<br>5.675133<br>0.189293<br>40.46028<br>Mean depen                                                  | 2.248257<br>1.903176<br>-1.598450<br>-2.091969<br>1.314402<br>1.842441<br>dent var<br>ent var                                     | 0.0329<br>0.0677<br>0.1216                                                                                           |
| C<br>X3*2<br>X3*X6<br>X3<br>X6*2<br>X6<br>R-squared<br>Adjusted R-squared<br>S.E. of regression                       | 4971.049<br>0.006818<br>-0.083008<br>-11.87220<br>0.248807<br>74.54566<br>0.825051<br>0.792653                         | 2211.068<br>0.003582<br>0.051930<br>5.675133<br>0.189293<br>40.46028<br>Mean depen<br>S.D. depend                                   | 2.248257<br>1.903176<br>-1.598450<br>-2.091969<br>1.314402<br>1.842441<br>dent var<br>ent var<br>iriterion                        | 0.0329<br>0.0677<br>0.1216<br>0.0460<br>0.1998<br>0.0764<br>589.4548<br>1400.613                                     |
| C<br>X3^2<br>X3'X6<br>X3<br>X6'2<br>X6<br>R-squared<br>Adjusted R-squared<br>S.E. of regression<br>S.E. of regression | 4971.049<br>0.006818<br>-0.083008<br>-11.87220<br>0.248807<br>74.54566<br>0.825051<br>0.792653<br>637.7748             | 2211.068<br>0.003582<br>0.051930<br>5.675133<br>0.189293<br>40.46028<br>Mean depen<br>S.D. depend<br>Akaike info o                  | 2.248257<br>1.903176<br>-1.598450<br>-2.091969<br>1.314402<br>1.842441<br>dent var<br>ent var<br>riterion<br>erion                | 0.0329<br>0.0677<br>0.1216<br>0.0460<br>0.1998<br>0.0764<br>589.4548<br>1400.613<br>15.91681                         |
| C<br>X3*2<br>X3*X6<br>X3<br>X6*2                                                                                      | 4971.049<br>0.006818<br>-0.083008<br>-11.87220<br>0.248807<br>74.54566<br>0.825051<br>0.792653<br>637.7748<br>10982430 | 2211.068<br>0.003582<br>0.051930<br>5.675133<br>0.189293<br>40.46028<br>Mean depen<br>S.D. depend<br>Akaike info o<br>Schwarz criti | 2.248257<br>1.903176<br>-1.598450<br>-2.091969<br>1.314402<br>1.842441<br>dent var<br>ent var<br>eriterion<br>erion<br>nn criter. | 0.0329<br>0.0677<br>0.1216<br>0.0460<br>0.1998<br>0.0764<br>589.4548<br>1400.613<br>15.91681<br>15.91681<br>15.91681 |

Figure 18. Test for heteroscedasticity

| Heteroskedasticity Te                                                                                         | st: White                                                                            |                                                                                     |                                                                                  |                                                                  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|
| F-statistic                                                                                                   | 0.692706                                                                             | Prob. F(6,26                                                                        | 0.6575                                                                           |                                                                  |
| Obs*R-squared                                                                                                 | 4.548172                                                                             | Prob. Chi-Sc                                                                        | 0.6029                                                                           |                                                                  |
| Scaled explained SS                                                                                           | 4.667543                                                                             | Prob. Chi-Sc                                                                        | 0.5871                                                                           |                                                                  |
| Test Equation:                                                                                                |                                                                                      |                                                                                     |                                                                                  |                                                                  |
| Dependent Variable: V                                                                                         | VGT RESIDAZ                                                                          |                                                                                     |                                                                                  |                                                                  |
| Method: Least Square                                                                                          |                                                                                      |                                                                                     |                                                                                  |                                                                  |
| Date: 02/05/24 Time:                                                                                          |                                                                                      |                                                                                     |                                                                                  |                                                                  |
| Sample: 1990 2022                                                                                             |                                                                                      |                                                                                     |                                                                                  |                                                                  |
| included observations                                                                                         | 33                                                                                   |                                                                                     |                                                                                  |                                                                  |
| Variable                                                                                                      | Coefficient                                                                          | Std. Error                                                                          | t-Statistic                                                                      | Prob.                                                            |
| С                                                                                                             | 46.37576                                                                             | 35,23728                                                                            | 1.316099                                                                         | 0.1996                                                           |
| X3^2*WGT^2                                                                                                    | -0.000222                                                                            | 0.000360                                                                            | -0.616716                                                                        | 0.5428                                                           |
| X3*X6*WGT^2                                                                                                   | 0.004655                                                                             | 0.008230                                                                            | 0.565588                                                                         | 0.5765                                                           |
|                                                                                                               | 0.227785                                                                             | 0.450926                                                                            | 0.505150                                                                         | 0.6177                                                           |
| X3*WGT^2                                                                                                      |                                                                                      |                                                                                     |                                                                                  | 0.4126                                                           |
| X3*WGT^2<br>X6^2*WGT^2                                                                                        | -0.033684                                                                            | 0.040448                                                                            | -0.832767                                                                        |                                                                  |
|                                                                                                               |                                                                                      | 0.040448                                                                            | -0.832767                                                                        |                                                                  |
| X6^2*WGT^2                                                                                                    | -0.033684                                                                            |                                                                                     |                                                                                  | 0.8542                                                           |
| X6*2*WGT*2<br>X6*WGT*2<br>WGT*2                                                                               | -0.033684                                                                            | 5.436951<br>141.7339<br>Mean depen                                                  | -0.185639<br>-0.580342<br>dent var                                               | 0.8542                                                           |
| X6*2*WGT*2<br>X6*WGT*2<br>WGT*2<br>R-squared                                                                  | -0.033684<br>-1.009308<br>-82.25415                                                  | 5.436951<br>141.7339<br>Mean depen<br>S.D. depend                                   | -0.185639<br>-0.580342<br>dent var<br>ent var                                    | 0.8542<br>0.5667<br>33.22380<br>53.16975                         |
| X6^2*WGT^2<br>X6*WGT^2<br>WGT^2<br>R-squared<br>Adjusted R-squared                                            | -0.033684<br>-1.009308<br>-82.25415<br>0.137823                                      | 5.436951<br>141.7339<br>Mean depen                                                  | -0.185639<br>-0.580342<br>dent var<br>ent var                                    | 0.8542<br>0.5667<br>33.22380<br>53.16975                         |
| X6*2*WGT*2<br>X6*WGT*2<br>WGT*2<br>R-squared<br>Adjusted R-squared<br>S.E. of regression                      | -0.033684<br>-1.009308<br>-82.25415<br>0.137823<br>-0.061140                         | 5.436951<br>141.7339<br>Mean depen<br>S.D. depend                                   | -0.185639<br>-0.580342<br>dent var<br>ent var<br>riterion                        | 0.8542<br>0.5667<br>33.22380<br>53.16975<br>11.03003             |
| X6*2*WGT*2<br>X6*WGT*2<br>WGT*2<br>R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid | -0.033684<br>-1.009308<br>-82.25415<br>0.137823<br>-0.061140<br>54.77105             | 5.436951<br>141.7339<br>Mean depen<br>S.D. depend<br>Akaike info c                  | -0.185639<br>-0.580342<br>dent var<br>ent var<br>riterion<br>erion               | 0.8542<br>0.5667<br>33.22380                                     |
| X6*2*WGT*2<br>X6*WGT*2                                                                                        | -0.033684<br>-1.009308<br>-82.25415<br>0.137823<br>-0.061140<br>54.77105<br>77996.58 | 5.436951<br>141.7339<br>Mean depen<br>S.D. depend<br>Akaike info c<br>Schwarz crite | -0.185639<br>-0.580342<br>dent var<br>ent var<br>riterion<br>erion<br>nn criter. | 0.8542<br>0.5667<br>33.22380<br>53.16975<br>11.03003<br>11.34747 |

Figure 19. Heteroskedasticity corrected white test

| view Proc Object Print  | Name Freeze    | Estimate Forecast     | Stats Reside  |          |
|-------------------------|----------------|-----------------------|---------------|----------|
| Dependent Variable: Y   |                |                       |               |          |
| Method: Least Square    | s              |                       |               |          |
| Date: 02/05/24 Time:    | 16:50          |                       |               |          |
| Sample: 1990 2022       |                |                       |               |          |
| Included observations:  | 33             |                       |               |          |
| Weighting series: 1/(X3 |                |                       |               |          |
| Neight type: Inverse s  | tandard deviat | ion (EViews def       | ault scaling) |          |
| Variable                | Coefficient    | Std. Error            | t-Statistic   | Prob.    |
| С                       | -32.02493      | 3,770616              | -8.493289     | 0.0000   |
| X3                      | 0.089157       | 0.005704              | 15.62993      | 0.0000   |
| X6                      | 0.650872       | 0.054177              | 12.01390      | 0.0000   |
|                         | Weighted       | Statistics            |               |          |
| R-squared               | 0.990472       | Mean dependent var    |               | 102.9894 |
| Adjusted R-squared      | 0.989837       | S.D. dependent var    |               | 26.20398 |
| S.E. of regression      | 6.045344       | Akaike info criterion |               | 6.522962 |
| Sum squared resid       | 1096.385       | Schwarz criterion     |               | 6.659008 |
| _og likelihood          | -104.6289      | Hannan-Quinn criter.  |               | 6.568737 |
| F-statistic             | 1559,289       | Durbin-Watso          | on stat       | 1.271058 |
| -statistic              |                |                       |               |          |

Fig. 20 Test of autocorrelation (D.W. method)

| liew Proc Object Print                                                                                                                                                               | Name Freeze                                     | stimate Forecas       | st Stats Resids |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|-----------------|----------|
| Dependent Variable: Y-<br>Method: Least Squares<br>Date: 02/05/24 Time: (<br>Sample (adjusted): 199<br>Included observations:<br>Weighting series: 1/(X3<br>Weight type: Inverse sta | 01:00<br>1 2022<br>32 after adjust<br>^2-X3*X6) | ments                 | fault scaling)  | Y.       |
| Variable                                                                                                                                                                             | Coefficient                                     | Std. Error            | t-Statistic     | Prob.    |
| с                                                                                                                                                                                    | -18.57524                                       | 3.662715              | -5.071442       | 0.0000   |
| X3-0.364471*X3(-1)                                                                                                                                                                   | 0.086505                                        | 0.008148              | 10.61644        | 0.0000   |
| X6-0.364471*X6(-1)                                                                                                                                                                   | 0.659375                                        | 0.073344              | 8.990184        | 0.0000   |
|                                                                                                                                                                                      | Weighted                                        | Statistics            |                 |          |
| R-squared                                                                                                                                                                            | 0.981457                                        | Mean dependent var    |                 | 73.74010 |
| Adjusted R-squared                                                                                                                                                                   | 0.980178                                        | S.D. dependent var    |                 | 19.23123 |
| S.E. of regression                                                                                                                                                                   | 6.109186                                        | Akaike info criterion |                 | 6.546524 |
| Sum squared resid                                                                                                                                                                    | 1082.342                                        | Schwarz criterion     |                 | 6.683937 |
| Log likelihood                                                                                                                                                                       | -101.7444                                       | Hannan-Qui            | nn criter.      | 6.592072 |
| F-statistic                                                                                                                                                                          | 767.4765                                        | Durbin-Wats           | on stat         | 1.650241 |
|                                                                                                                                                                                      |                                                 |                       |                 |          |

Fig. 21 Corrected autocorrelation results



There is an Open Access article, distributed under the term of the Creative Commons Attribution – Non Commercial 4.0 International (CC BY-NC 4.0)

(https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and building upon the work for non-commercial use, provided the original work is properly cited.